The output from a single stage amplifier is usually insufficient to drive an output device. In other words, the gain of a single amplifier is inadequate for practical purposes. Consequently, additional amplification over two or three stages is necessary. To achieve this, the output of each amplifier stage is coupled in some way to the input of the next stage. The resulting system is referred to as a multistage amplifier. It may be emphasised here that a practical amplifier is always a multistage amplifier. For example, in a transistor radio receiver, the number of amplification stages may be six or more. In this chapter, we shall focus our attention on the various multistage transistor amplifiers and their practical applications.

11.1 Multistage Transistor Amplifier

A transistor circuit containing more than one stage of amplification is known as multistage transistor amplifier.
In a multistage amplifier, a number of single amplifiers are connected in \textit{cascade arrangement} \textit{i.e.} output of first stage is connected to the input of the second stage through a suitable \textit{coupling device} and so on. The purpose of coupling device (\textit{e.g.} a capacitor, transformer etc.) is (\textit{i}) to transfer a.c. output of one stage to the input of the next stage and (\textit{ii}) to isolate the d.c. conditions of one stage from the next stage. Fig. 11.1 shows the block diagram of a 3-stage amplifier. Each stage consists of one transistor and associated circuitry and is coupled to the next stage through a coupling device. The name of the amplifier is usually given after the type of coupling used. \textit{e.g.}

<table>
<thead>
<tr>
<th>Name of coupling</th>
<th>Name of multistage amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC coupling</td>
<td>R-C coupled amplifier</td>
</tr>
<tr>
<td>Transformer coupling</td>
<td>Transformer coupled amplifier</td>
</tr>
<tr>
<td>Direct coupling</td>
<td>Direct coupled amplifier</td>
</tr>
</tbody>
</table>

\textit{(i)} In \textit{RC} coupling, a capacitor is used as the coupling device. The capacitor connects the output of one stage to the input of the next stage in order to pass the a.c. signal on while blocking the d.c. bias voltages.

\textit{(ii)} In transformer coupling, transformer is used as the coupling device. The transformer coupling provides the same two functions (\textit{viz.} to pass the signal on and blocking d.c.) but permits in addition impedance matching.

\textit{(iii)} In direct coupling or d.c. coupling, the individual amplifier stage bias conditions are so designed that the two stages may be directly connected without the necessity for d.c. isolation.

\subsection*{11.2 Role of Capacitors in Transistor Amplifiers}

Regardless of the manner in which a capacitor is connected in a transistor amplifier, its behaviour towards d.c. and a.c. is as follows. \textit{A capacitor blocks d.c. i.e. a capacitor behaves as an \textit{“open”}} to d.c. Therefore, for d.c. analysis, we can remove the capacitors from the transistor amplifier circuit.

A capacitor offers reactance ($= 1/2\pi fC$) to a.c. depending upon the values of $f$ and $C$. In practical transistor circuits, the size of capacitors is so selected that they offer negligible (ideally zero) reactance to the range of frequencies handled by the circuits. Therefore, \textit{for a.c. analysis, we can replace the capacitors by a short \textit{i.e. by a wire.}} The capacitors serve the following two roles in transistor amplifiers:

1. As coupling capacitors
2. As bypass capacitors

\textbf{1. As coupling capacitors.} In most applications, you will not see a single transistor amplifier. Rather we use a multistage amplifier \textit{i.e.} a number of transistor amplifiers are connected in series or cascaded. The capacitors are commonly used to connect one amplifier stage to another. When a capacitor is used for this purpose, it is called a \textit{coupling capacitor}. Fig. 11.2 shows the coupling capacitors ($C_{C1}$; $C_{C2}$; $C_{C3}$ and $C_{C4}$) in a multistage amplifier. A coupling capacitor performs the following two functions:

\textbf{(i)} It blocks d.c. \textit{i.e.} it provides d.c. isolation between the two stages of a multistage amplifier.

\* The term \textit{cascaded} means \textit{connected in series.}

\*\* $X_C = \frac{1}{2\pi fC}$. For d.c., $f = 0$ so that $X_C \rightarrow \infty$. Therefore, a capacitor behaves as an open to d.c.
2. **As bypass capacitors.** Like a coupling capacitor, a bypass capacitor also blocks d.c. and behaves as a short or wire (due to proper selection of capacitor size) to an a.c. signal. But it is used for a different purpose. A bypass capacitor is connected in parallel with a circuit component (e.g. resistor) to bypass the a.c. signal and hence the name. Fig. 11.3 shows a bypass capacitor \( C_E \) connected across the emitter resistance \( R_E \). Since \( C_E \) behaves as a short to the a.c. signal, the whole of a.c. signal \((i_a)\) passes through it. Note that \( C_E \) keeps the emitter at a.c. ground. Thus for a.c. purposes, \( R_E \) does not exist. We have already seen in the previous chapter that \( C_E \) plays an important role in determining the voltage gain of the amplifier circuit. If \( C_E \) is removed, the voltage gain of the amplifier is greatly reduced. Note that \( C_m \) is the coupling capacitor in this circuit.

### 11.3 Important Terms

In the study of multistage amplifiers, we shall frequently come across the terms *gain*, *frequency response*, *decibel gain* and *bandwidth*. These terms stand discussed below:

* **Gain.** The ratio of the output *electrical quantity to the input one of the amplifier is called its gain.*

* Accordingly, it can be current gain or voltage gain or power gain.
The gain of a multistage amplifier is equal to the product of gains of individual stages. For instance, if \( G_1, G_2 \) and \( G_3 \) are the individual voltage gains of a three-stage amplifier, then total voltage gain \( G \) is given by:

\[ G = G_1 \times G_2 \times G_3 \]

It is worthwhile to mention here that in practice, total gain \( G \) is less than \( G_1 \times G_2 \times G_3 \) due to the loading effect of next stages.

(ii) **Frequency response.** The voltage gain of an amplifier varies with signal frequency. It is because reactance of the capacitors in the circuit changes with signal frequency and hence affects the output voltage. The curve between voltage gain and signal frequency of an amplifier is known as frequency response. Fig. 11.4 shows the frequency response of a typical amplifier. The gain of the amplifier increases as the frequency increases from zero till it becomes maximum at \( f_r \), called resonant frequency. If the frequency of signal increases beyond \( f_r \), the gain decreases.

The performance of an amplifier depends to a considerable extent upon its frequency response. While designing an amplifier, appropriate steps must be taken to ensure that gain is essentially uniform over some specified frequency range. For instance, in case of an audio amplifier, which is used to amplify speech or music, it is necessary that all the frequencies in the sound spectrum (i.e. 20 Hz to 20 kHz) should be uniformly amplified otherwise speaker will give a distorted sound output.

(iii) **Decibel gain.** Although the gain of an amplifier can be expressed as a number, yet it is of great practical importance to assign it a unit. The unit assigned is bel or decibel (db). The common logarithm (log to the base 10) of power gain is known as bel power gain i.e.

\[
\text{Power gain} = \log_{10} \frac{P_{\text{out}}}{P_{\text{in}}} \text{ bel}
\]

\[ 1 \text{ bel} = 10 \text{ db} \]

\[ 1 \text{ db} = \log_{10} \frac{10}{1} = \log_{10} 10 = 1 \text{ bel} \]

---

This can be easily proved. Suppose the input to first stage is \( V \).

Output of first stage = \( G_1V \)

Output of second stage = \( (G_1V)G_2 = G_1G_2V \)

Output of third stage = \( (G_1G_2V)G_3 = G_1G_2G_3V \)

Total gain, \( G = \frac{\text{Output of third stage}}{V} \)

or \[ G = \frac{G_1G_2G_3V}{V} = G_1 \times G_2 \times G_3 \]
Principles of Electronics

\[ \text{Power gain} = 10 \log_{10} \frac{P_{\text{out}}}{P_{\text{in}}} \text{ db} \]

If the two powers are developed in the same resistance or equal resistances, then,

\[ P_1 = \frac{V_{\text{in}}^2}{R} = I_{\text{in}}^2 R \]
\[ P_2 = \frac{V_{\text{out}}^2}{R} = I_{\text{out}}^2 R \]

\[ \vdots \]
\[ \text{Voltage gain in db} = 10 \log_{10} \frac{V_{\text{out}}^2 / R}{V_{\text{in}}^2 / R} = 20 \log_{10} \frac{V_{\text{out}}}{V_{\text{in}}} \]
\[ \text{Current gain in db} = 10 \log_{10} \frac{I_{\text{out}}^2 R}{I_{\text{in}}^2 R} = 20 \log_{10} \frac{I_{\text{out}}}{I_{\text{in}}} \]

Advantages. The following are the advantages of expressing the gain in db:

(a) The unit db is a logarithmic unit. Our ear response is also logarithmic i.e. loudness of sound heard by ear is not according to the intensity of sound but according to the log of intensity of sound. Thus if the intensity of sound given by speaker (i.e. power) is increased 100 times, our ears hear a doubling effect (\( \log_{10} 100 = 2 \)) i.e. as if loudness were doubled instead of made 100 times. Hence, this unit tallies with the natural response of our ears.

(b) When the gains are expressed in db, the overall gain of a multistage amplifier is the sum of gains of individual stages in db. Thus referring to Fig. 11.6,

\[ \text{Gain as number} = \frac{V_2}{V_1} \times \frac{V_3}{V_2} \]
\[ \text{Gain in db} = 20 \log_{10} \frac{V_2}{V_1} \times \frac{V_3}{V_2} \]
\[ = 20 \log_{10} \frac{V_2}{V_1} + 20 \log_{10} \frac{V_3}{V_2} \]
\[ = 1\text{st stage gain in db} + 2\text{nd stage gain in db} \]

However, absolute gain is obtained by multiplying the gains of individual stages. Obviously, it is easier to add than to multiply.

(iv) Bandwidth. The range of frequency over which the voltage gain is equal to or greater than \( 70.7\% \) of the maximum gain is known as bandwidth.

* The human ear is not a very sensitive hearing device. It has been found that if the gain falls to 70.7% of maximum gain, the ear cannot detect the change. For instance, if the gain of an amplifier is 100, then even if the gain falls to 70.7, the ear cannot detect the change in intensity of sound and hence no distortion will be heard. However, if the gain falls below 70.7, the ear will hear clear distortion.
The voltage gain of an amplifier changes with frequency. Referring to the frequency response in Fig. 11.7, it is clear that for any frequency lying between \( f_1 \) and \( f_2 \), the gain is equal to or greater than 70.7% of the maximum gain. Therefore, \( f_1 - f_2 \) is the bandwidth. It may be seen that \( f_1 \) and \( f_2 \) are the limiting frequencies. The former (\( f_1 \)) is called *lower cut-off frequency* and the latter (\( f_2 \)) is known as *upper cut-off frequency*. For distortionless amplification, it is important that signal frequency range must be within the bandwidth of the amplifier.

The bandwidth of an amplifier can also be defined in terms of *db*. Suppose the maximum voltage gain of an amplifier is 100. Then 70.7% of it is 70.7.

\[
\begin{align*}
\text{Fall in voltage gain from maximum gain} &= 20 \log_{10} 100 - 20 \log_{10} 70.7 \\
&= 20 \log_{10} \frac{100}{70.7} \text{ db} \\
&= 20 \log_{10} 1.4142 \text{ db} = 3 \text{ db}
\end{align*}
\]

Hence bandwidth of an amplifier is the range of frequency at the limits of which its voltage gain falls by 3 db from the maximum gain.

The frequency \( f_1 \) or \( f_2 \) is also called *3-db frequency* or *half-power frequency*.

The 3-db designation comes from the fact that voltage gain at these frequencies is 3 db below the maximum value. The term half-power is used because when voltage is down to 0.707 of its maximum value, the power (proportional to \( V^2 \)) is down to \((0.707)^2\) or one-half of its maximum value.

**Example 11.1.** Find the gain in db in the following cases :

(i) Voltage gain of 30  
(ii) Power gain of 100

**Solution.**

(i) Voltage gain = \( 20 \log_{10} 30 \text{ db} = 29.54 \text{ db} \)

(ii) Power gain = \( 10 \log_{10} 100 \text{ db} = 20 \text{ db} \)

**Example 11.2.** Express the following gains as a number :

(i) Power gain of 40 db  
(ii) Power gain of 43 db

**Solution.**

(i) Power gain = 40 db = 4 bel

If we want to find the gain as a number, we should work from logarithm back to the original number.
Principles of Electronics

\[ \therefore \quad \text{Gain} = \text{Antilog} 4 = 10^4 = 10,000 \]

(ii) Power gain = 43 \( \text{db} \) = 4.3 \( \text{bel} \)

\[ \therefore \quad \text{Power gain} = \text{Antilog} 4.3 = 2 \times 10^4 = 20,000 \]

Alternatively.

\[ 10 \log_{10} \frac{P_2}{P_1} = 43 \ \text{db} \]

or \[ \log_{10} \frac{P_2}{P_1} = 43/10 = 4.3 \]

\[ \therefore \quad \frac{P_2}{P_1} = (10)^{4.3} = 20,000 \]

In general, we have,

\[ \frac{V_2}{V_1} = (10)^{\text{gain in \( \text{db} \)/20}} \]

\[ \frac{P_2}{P_1} = (10)^{\text{gain in \( \text{db} \)/10}} \]

Example 11.3. A three-stage amplifier has a first stage voltage gain of 100, second stage voltage gain of 200 and third stage voltage gain of 400. Find the total voltage gain in \( \text{db} \).

Solution.

First-stage voltage gain in \( \text{db} \) = 20 \( \log_{10} 100 \) = 20 \times 2 = 40

Second-stage voltage gain in \( \text{db} \) = 20 \( \log_{10} 200 \) = 20 \times 2.3 = 46

Third-stage voltage gain in \( \text{db} \) = 20 \( \log_{10} 400 \) = 20 \times 2.6 = 52

\[ \therefore \quad \text{Total voltage gain} = 40 + 46 + 52 = 138 \ \text{db} \]

Example 11.4. (i) A multistage amplifier employs five stages each of which has a power gain of 30. What is the total gain of the amplifier in \( \text{db} \)?

(ii) If a negative feedback of 10 \( \text{db} \) is employed, find the resultant gain.

Solution. Absolute gain of each stage = 30

No. of stages = 5

(i) Power gain of one stage in \( \text{db} \) = 10 \( \log_{10} 30 \) = 14.77

\[ \therefore \quad \text{Total power gain} = 5 \times 14.77 = 73.85 \ \text{db} \]

(ii) Resultant power gain with negative feedback

\[ = 73.85 - 10 = 63.85 \ \text{db} \]

It is clear from the above example that by expressing the gain in \( \text{db} \), calculations have become very simple.

Example 11.5. In an amplifier, the output power is 1.5 watts at 2 kHz and 0.3 watt at 20 Hz, while the input power is constant at 10 mW. Calculate by how many decibels gain at 20 Hz is below that at 2 kHz?

Solution.

\[ \text{db power gain at 2 kHz}. \quad \text{At 2 kHz, the output power is 1.5 W and input power is 10 mW.} \]

\[ \therefore \quad \text{Power gain in \( \text{db} \)} = 10 \log_{10} \frac{1.5 \text{ W}}{10 \text{ mW}} = 21.76 \]

\[ \text{db power gain at 20 Hz}. \quad \text{At 20 Hz, the output power is 0.3 W and input power is 10 mW.} \]

\[ \therefore \quad \text{Power gain in \( \text{db} \)} = 10 \log_{10} \frac{0.3 \text{ W}}{10 \text{ mW}} = 14.77 \]

Fall in gain from 2 kHz to 20 Hz = 21.76 – 14.77 = 6.99 \( \text{db} \)
Example 11.6. A certain amplifier has voltage gain of 15 db. If the input signal voltage is 0.8V, what is the output voltage?

Solution.

\[ \text{db voltage gain} = 20 \log_{10} \frac{V_2}{V_1} \]

or\[ 15 = 20 \log_{10} \frac{V_2}{V_1} \]

or\[ \frac{15}{20} = \log_{10} \frac{V_2}{0.8} \]

Taking antilogs, we get,

\[ \text{Antilog} 0.75 = \text{Antilog} \left( \log_{10} \frac{V_2}{0.8} \right) \]

or\[ 10^{0.75} = \frac{V_2}{0.8} \]

\[ \therefore \quad V_2 = 10^{0.75} \times 0.8 = 4.5 \text{ V} \]

Example 11.7. An amplifier has an open-circuit voltage gain of 70 db and an output resistance of 1.5 kΩ. Determine the minimum value of load resistance so that voltage gain is not more than 67db.

Solution.

\[ A_0 = 70 \text{ db} ; \quad A_v = 67 \text{ db} \]

\[ A_0 \text{ in } \text{db} - A_v \text{ in } \text{db} = 70 - 67 = 3 \text{ db} \]

or\[ 20 \log_{10} \frac{A_0}{A_v} = 3 \]

or\[ \frac{A_0}{A_v} = (10)^{3/20} = 1.41 \]

But\[ \frac{A_v}{A_0} = \frac{R_L}{R_{out} + R_L} \] [See Art. 10.20]

\[ \therefore \quad \frac{1}{1.41} = \frac{R_L}{1.5 + R_L} \]

or\[ R_L = 3.65 \text{ kΩ} \]

Example 11.8. An amplifier feeding a resistive load of 1kΩ has a voltage gain of 40 db. If the input signal is 10 mV, find (i) output voltage (ii) load power.

Solution.

(i)

\[ \frac{V_{out}}{V_{in}} = (10)^{40 \text{ db gain/20}} = (10)^{40/20} = 100 \]

\[ \therefore \quad V_{out} = 100 \times V_{in} = 100 \times 10 \text{ mV} = 1000 \text{ mV} = 1 \text{ V} \]

(ii) Load power

\[ \frac{V_{out}^2}{R_L} = \frac{(1)^2}{1000} = 10^{-3} \text{ W} = 1 \text{ mW} \]

Example 11.9. An amplifier rated at 40W output is connected to a 10Ω speaker.

(i) Calculate the input power required for full power output if the power gain is 25 db.

(ii) Calculate the input voltage for rated output if the amplifier voltage gain is 40 db.

Solution.

(i) Power gain in db = \[ 10 \log_{10} \frac{P_2}{P_1} \] or \[ 25 = 10 \log_{10} \frac{40\text{W}}{P_1} \]
Principles of Electronics

\[ P_1 = \frac{40W}{\text{antilog} 2.5} = \frac{40W}{3.16 \times 10^2} = \frac{40W}{316} = 126.5 \text{ mW} \]

(ii) Voltage gain in \( \text{db} \) = \( 20 \log_{10} \frac{V_2}{V_1} \) or \( 40 = 20 \log_{10} \frac{V_2}{V_1} \)

\[ \therefore \frac{V_2}{V_1} = \text{antilog} 2 = 100 \]

Now

\[ V_2 = \sqrt{P_2 R} = \sqrt{40W \times 10 \Omega} = 20 \text{ V} \]

\[ \therefore V_1 = \frac{V_2}{100} = \frac{20 \text{ V}}{100} = 200 \text{ mV} \]

Example 11.10. In an amplifier, the maximum voltage gain is 2000 and occurs at 2 kHz. It falls to 1414 at 10 kHz and 50 Hz. Find:

(i) Bandwidth  
(ii) Lower cut-off frequency  
(iii) Upper cut-off frequency.

Solution.

(i) Referring to the frequency response in Fig. 11.8, the maximum gain is 2000. Then 70.7% of this gain is 0.707 \times 2000 = 1414. It is given that gain is 1414 at 50 Hz and 10 kHz. As bandwidth is the range of frequency over which gain is equal or greater than 70.7% of maximum gain,

\[ \therefore \text{Bandwidth} = 50 \text{ Hz to 10 kHz} \]

(ii) The frequency (on lower side) at which the voltage gain of the amplifier is exactly 70.7% of the maximum gain is known as lower cut-off frequency. Referring to Fig. 11.8, it is clear that:

Lower cut-off frequency = 50 Hz

(iii) The frequency (on the higher side) at which the voltage gain of the amplifier is exactly 70.7% of the maximum gain is known as upper cut-off frequency. Referring to Fig. 11.8, it is clear that:

Upper cut-off frequency = 10 kHz

Comments. As bandwidth of the amplifier is 50 Hz to 10 kHz, therefore, it will amplify the signal frequencies lying in this range without any distortion. However, if the signal frequency is not in this range, then there will be distortion in the output.

Note. The \( \text{db} \) power rating of communication equipment is normally less than 50 \( \text{db} \).

11.4 Properties of \( \text{db} \) Gain

The power gain expressed as a number is called ordinary power gain. Similarly, the voltage gain expressed as a number is called ordinary voltage gain.

1. Properties of \( \text{db} \) power gain. The following are the useful rules for \( \text{db} \) power gain:

(i) Each time the ordinary power gain increases (decreases) by a factor of 10, the \( \text{db} \) power gain increases (decreases) by 10 \( \text{db} \).

For example, suppose the ordinary power gain increases from 100 to 1000 (\( i.e. \) by a factor of 10).
Increase in \( \text{db} \) power gain = \( 10 \log_{10} 1000 - 10 \log_{10} 100 \)
\[ = 30 - 20 = 10 \text{ db} \]

This property also applies for the decrease in power gain.

(ii) Each time the ordinary power gain increases (decreases) by a factor of 2, the \( \text{db} \) power gain increases (decreases) by 3 \( \text{db} \).

For example, suppose the power gain increases from 100 to 200 (\( i.e. \) by a factor of 2).
\[ \therefore \quad \text{Increase in } \text{db} \text{ power gain} = 10 \log_{10} 200 - 10 \log_{10} 100 \]
\[ = 23 - 20 = 3 \text{ db} \]

2. Properties of \( \text{db} \) voltage gain. The following are the useful rules for \( \text{db} \) voltage gain:

(i) Each time the ordinary voltage gain increases (decreases) by a factor of 10, the \( \text{db} \) voltage gain increases (decreases) by 20 \( \text{db} \).

For example, suppose the voltage gain increases from 100 to 1000 (\( i.e. \) by a factor of 10).
\[ \therefore \quad \text{Increase in } \text{db} \text{ voltage gain} = 20 \log_{10} 1000 - 20 \log_{10} 100 \]
\[ = 60 - 40 = 20 \text{ db} \]

(ii) Each time the ordinary voltage gain increases (decreases) by a factor of 2, the \( \text{db} \) voltage gain increases (decreases) by 6 \( \text{db} \).

For example, suppose the voltage gain increases from 100 to 200 (\( i.e. \) by a factor of 2).
\[ \therefore \quad \text{Increase in } \text{db} \text{ voltage gain} = 20 \log_{10} 200 - 20 \log_{10} 100 \]
\[ = 46 - 40 = 6 \text{ db} \]

11.5 RC Coupled Transistor Amplifier

This is the most popular type of coupling because it is cheap and provides excellent audio fidelity over a wide range of frequency. It is usually employed for voltage amplification. Fig. 11.9 shows two stages of an RC coupled amplifier. A coupling capacitor \( C_c \) is used to connect the output of first stage to the base (\( i.e. \) input) of the second stage and so on. As the coupling from one stage to next is achieved by a coupling capacitor followed by a connection to a shunt resistor, therefore, such amplifiers are called resistance - capacitance coupled amplifiers.

The resistances \( R_1, R_2 \) and \( R_E \) form the biasing and stabilisation network. The emitter bypass capacitor offers low reactance path to the signal. Without it, the voltage gain of each stage would be lost. The coupling capacitor \( C_C \) transmits a.c. signal but blocks d.c. This prevents d.c. interference between various stages and the shifting of operating point.
Principles of Electronics

Operation. When a.c. signal is applied to the base of the first transistor, it appears in the amplified form across its collector load $R_C$. The amplified signal developed across $R_C$ is given to base of next stage through coupling capacitor $C_C$. The second stage does further amplification of the signal. In this way, the cascaded (one after another) stages amplify the signal and the overall gain is considerably increased.

It may be mentioned here that total gain is less than the product of the gains of individual stages. It is because when a second stage is made to follow the first stage, the effective load resistance of first stage is reduced due to the shunting effect of the input resistance of second stage. This reduces the gain of the stage which is loaded by the next stage. For instance, in a 3-stage amplifier, the gain of first and second stages will be reduced due to loading effect of next stage. However, the gain of the third stage which has no loading effect of subsequent stage, remains unchanged. The overall gain shall be equal to the product of the gains of three stages.

Frequency response. Fig.11.10 shows the frequency response of a typical $RC$ coupled amplifier. It is clear that voltage gain drops off at low (< 50 Hz) and high (> 20 kHz) frequencies whereas it is uniform over mid-frequency range (50 Hz to 20 kHz). This behaviour of the amplifier is briefly explained below:

(i) At low frequencies (< 50 Hz), the reactance of coupling capacitor $C_C$ is quite high and hence very small part of signal will pass from one stage to the next stage. Moreover, $C_C$ cannot shunt the emitter resistance $R_E$ effectively because of its large reactance at low frequencies. These two factors cause a falling of voltage gain at low frequencies.

(ii) At high frequencies (> 20 kHz), the reactance of $C_C$ is very small and it behaves as a short circuit. This increases the loading effect of next stage and serves to reduce the voltage gain. Moreover, at high frequency, capacitive reactance of base-emitter junction is low which increases the base current. This reduces the current amplification factor $\beta$. Due to these two reasons, the voltage gain drops off at high frequency.

(iii) At mid-frequencies (50 Hz to 20 kHz), the voltage gain of the amplifier is constant. The effect of coupling capacitor in this frequency range is such so as to maintain a uniform voltage gain. Thus, as the frequency increases in this range, reactance of $C_C$ decreases which tends to increase the gain. However, at the same time, lower reactance means higher loading of first stage and hence lower gain. These two factors almost cancel each other, resulting in a uniform gain at mid-frequency.

Advantages

(i) It has excellent frequency response. The gain is constant over the audio frequency range which is the region of most importance for speech, music etc.

(ii) It has lower cost since it employs resistors and capacitors which are cheap.

(iii) The circuit is very compact as the modern resistors and capacitors are small and extremely light.

Disadvantages

(i) The $RC$ coupled amplifiers have low voltage and power gain. It is because the low resistance presented by the input of each stage to the preceding stage decreases the effective load resistance ($R_{AC}$) and hence the gain.

(ii) They have the tendency to become noisy with age, particularly in moist climates.

(iii) Impedance matching is poor. It is because the output impedance of $RC$ coupled amplifier is
several hundred ohms whereas the input im-
pedance of a speaker is only a few ohms.
Hence, little power will be transferred to the
speaker.

Applications.
The RC coupled amplifiers have excel-
lot audio fidelity over a wide range of fre-
quency. Therefore, they are widely used as
voltage amplifiers e.g. in the initial stages of
public address system. If other type of cou-
pling (e.g. transformer coupling) is employed
in the initial stages, this results in frequency
distortion which may be amplified in next
stages. However, because of poor impedance
matching, RC coupling is rarely used in the
final stages.

Note. When there is an even number of cascaded stages (2, 4, 6 etc), the output signal is not
inverted from the input. When the number of stages is odd (1, 3, 5 etc.), the output signal is inverted
from the input.

Example 11.11 A single stage amplifier has a voltage gain of 60. The collector load \( R_C = 500 \) \( \Omega \) and the input impedance is 1k\( \Omega \). Calculate the overall gain when two such stages are cascaded
through R-C coupling. Comment on the result.

Solution. The gain of second stage remains 60 because it has no loading effect of any stage.
However, the gain of first stage is less than 60 due to the loading effect of the input impedance of
second stage.

\[
\text{Gain of second stage} = 60
\]

Effective load of first stage = \( R_C \parallel R_{in} = \frac{500 \times 1000}{500 + 1000} = 333 \Omega \)

Gain of first stage = \( 60 \times 333/500 = 39.96 \)

Total gain = \( 60 \times 39.96 = 2397 \)

Comments. The gain of individual stage is 60. But when two stages are coupled, the gain is not
60 \( \times \) 60 = 3600 as might be expected rather it is less and is equal to 2397 in this case. It is because
the first stage has a loading effect of the input impedance of second stage and consequently its gain
is reduced. However, the second stage has no loading effect of any subsequent stage. Hence, the gain
of second stage remains 60.

Example 11.12. Fig. 11.11 shows two-stage RC coupled amplifier. If the input resistance \( R_{in} \) of
each stage is 1k\( \Omega \), find : (i) voltage gain of first stage (ii) voltage gain of second stage (iii) total
voltage gain.

Solution.

\( R_{in} = 1 \text{ k}\Omega \); \( \beta = 100 \); \( R_C = 2 \text{ k}\Omega \)

(i) The first stage has a loading of input resistance of second stage.

\[
\text{Effective load of first stage} = R_C \parallel R_{in} = \frac{2 \times 1}{2 + 1} = 0.66 \text{ k}\Omega
\]

\[
\text{Voltage gain of first stage} = \beta \times R_C / R_{in} = 100 \times 0.66 / 1 = 66
\]

(ii) The collector of the second stage sees a load of only \( R_C (= 2 \text{ k}\Omega) \) as there is no loading effect
of any subsequent stage.
**Example 11.13.** A single stage amplifier has collector load \( R_C = 10 \, k\Omega \); input resistance \( R_{in} = 1 \, k\Omega \) and \( \beta = 100 \). If load \( R_L = 100 \, \Omega \), find the voltage gain. Comment on the result.

**Solution.** Effective collector load, \( R_{AC} = R_C \parallel R_L = 10 \, k\Omega \parallel 100 \, \Omega = 100 \, \Omega \)

\[
\therefore \quad \text{Voltage gain} = \beta \times \frac{R_{AC}}{R_{in}} = 100 \times \frac{100}{1000} = 10
\]

**Comments.** As the load (e.g. speaker) is only of 100 ohms, therefore, effective load of the amplifier is too much reduced. Consequently, voltage gain is quite small. Under such situations, we can use a transformer to improve the voltage gain and signal handling capability. For example, if the output to 100 \( \Omega \) load is delivered through a step-down transformer, the effective collector load and hence voltage gain can be increased.

**Example 11.14.** Fig. 11.12 shows a 2-stage RC coupled amplifier. What is the biasing potential for the second stage? If the coupling capacitor \( C_C \) is replaced by a wire, what would happen to the circuit?

**Solution.** Referring to Fig. 11.12, we have,

\[
V_B = \frac{V_{CC}}{R_3 + R_4} \times R_4 = \frac{20}{10 + 2.2} \times 2.2 = 3.6 \, V
\]

Thus biasing potential for the second stage is 3.6 V.

When the coupling capacitor \( C_C \) is replaced by a wire, this changes the entire picture. It is because now \( R_C \) of the first stage is in parallel with \( R_3 \) of the second stage as shown in Fig. 11.13(i). The total resistance of \( R_C (= 3.6 \, k\Omega) \) and \( R_3 (= 10 \, k\Omega) \) is given by:

\[
* \quad 10 \, k\Omega \parallel 100 \, \Omega \text{ is essentially } 100 \, \Omega.
\]
The circuit shown in Fig. 11.13 (i) then reduces to the one shown in Fig. 11.13 (ii). Referring to Fig. 11.13 (ii), we have,

\[ V_B = \frac{V_{CC}}{R_{eq} + R_4} \times R_4 = \frac{20}{2.65 + 2.2} \times 2.2 = 9.07 \text{ V} \]

Thus the biasing potential of second stage is drastically changed. The 9.07 V at the base of \( Q_2 \) would undoubtedly cause the transistor to saturate and the device would be rendered useless as an amplifier. This example explains the importance of dc isolation in a multistage amplifier. The use of coupling capacitor allows each amplifier stage to maintain its independent biasing potential while allowing the ac output from one stage to pass on to the next stage.

**Example 11.15.** Fig. 11.14 shows a 2-stage RC coupled amplifier. Find the voltage gain of (i) first stage (ii) second stage and (iii) overall voltage gain.

**Solution.** (i) **Voltage gain of First stage.** The input impedance of the second stage is the load for the first stage. In order to find input impedance of second stage, we shall first find \( r_e' \) (ac emitter resistance) for the second stage.

\[ R_{eq} = \frac{R_1}{R_3 + R_c} = \frac{10 \times 3.6}{10 + 3.6} = 2.65 \text{ kΩ} \]
Voltage across $R_6 = \frac{V_{CC}}{R_5 + R_6} \times R_6 = \frac{15}{15 + 2.5} \times 2.5 = 2.14$ V

Voltage across $R_8 = 2.14 - 0.7 = 1.44$ V

Emitter current in $R_8$, $I_E = \frac{1.44 V}{1 \Omega} = 1.44$ mA

$r_e'$ for second stage $= \frac{25 \text{ mV}}{1.44 \text{ mA}} = 17.4 \Omega$

Similarly, it can be shown that $r_e'$ for the first stage is $19.8 \Omega$.

$Z_{in(base)}$ for second stage $= \beta \times r_e'$ for second stage $= 200 \times (17.4 \Omega) = 3.48$ kΩ

Input impedance of the second stage, $Z_{in} = R_5 \parallel R_6 \parallel Z_{in(base)} = 15 \Omega \parallel 2.5 \Omega \parallel 3.48 \Omega = 1.33$ kΩ

.: Effective collector load for first stage is $R_{AC} = R_3 \parallel Z_{in} = 5 \Omega \parallel 1.33 \Omega = 1.05$ kΩ

Voltage gain of first stage $= r_e'$ for first stage

(ii) Voltage gain of second stage. The load $R_L$ ($= 10$ kΩ) is the load for the second stage.

.: Effective collector load for second stage is $R_{AC} = R_7 \parallel R_L = 5 \Omega \parallel 10 \Omega = 3.33$ kΩ

Voltage gain of second stage $= r_e'$ for second stage

(iii) Overall voltage gain. Overall voltage gain $= $ First stage gain $\times$ Second stage gain $= 53 \times 191.4 = 10144$

11.6 Transformer-Coupled Amplifier

The main reason for low voltage and power gain of $RC$ coupled amplifier is that the effective load ($R_{AC}$) of each stage is decreased due to the low resistance presented by the input of each stage to the preceding stage. If the effective load resistance of each stage could be increased, the voltage and power gain could be increased. This can be achieved by transformer coupling. The use of **im-
pedance-changing properties of transformer, the low resistance of a stage (or load) can be reflected as a high load resistance to the previous stage.

Transformer coupling is generally employed when the load is small. It is mostly used for power amplification. Fig. 11.15 shows two stages of transformer coupled amplifier. A coupling transformer is used to feed the output of one stage to the input of the next stage. The primary $P$ of this transformer is made the collector load and its secondary $S$ gives input to the next stage.

**Operation.** When an a.c. signal is applied to the base of first transistor, it appears in the amplified form across primary $P$ of the coupling transformer. The voltage developed across primary is transferred to the input of the next stage by the transformer secondary as shown in Fig.11.15. The second stage renders amplification in an exactly similar manner.

**Frequency response.** The frequency response of a transformer coupled amplifier is shown in Fig.11.16. It is clear that frequency response is rather poor i.e. gain is constant only over a small range of frequency. The output voltage is equal to the collector current multiplied by reactance of primary. At low frequencies, the reactance of primary begins to fall, resulting in decreased gain. At high frequencies, the capacitance between turns of windings acts as a bypass condenser to reduce the output voltage and hence gain. It follows, therefore, that there will be disproportionate amplification of frequencies in a complete signal such as music, speech etc. Hence, transformer-coupled amplifier introduces frequency distortion.

It may be added here that in a properly designed transformer, it is possible to achieve a fairly constant gain over the audio frequency range. But a transformer that achieves a frequency response comparable to $RC$ coupling may cost 10 to 20 times as much as the inexpensive $RC$ coupled amplifier.

**Advantages**

(i) No signal power is lost in the collector or base resistors.

(ii) An excellent impedance matching can be achieved in a transformer coupled amplifier. It is easy to make the inductive reactance of primary equal to the output impedance of the transistor and inductive reactance of secondary equal to the input impedance of next stage.

(iii) Due to excellent impedance matching, transformer coupling provides higher gain. As a
matter of fact, a single stage of properly designed transformer coupling can provide the gain of two stages of RC coupling.

**Disadvantages**

(i) It has a poor frequency response \( i.e. \) the gain varies considerably with frequency.

(ii) The coupling transformers are bulky and fairly expensive at audio frequencies.

(iii) Frequency distortion is higher \( i.e. \) low frequency signals are less amplified as compared to the high frequency signals.

(iv) Transformer coupling tends to introduce \( * \text{hum} \) in the output.

**Applications.** Transformer coupling is mostly employed for **impedance matching.** In general, the last stage of a multistage amplifier is the **power stage.** Here, a concentrated effort is made to transfer maximum power to the output device \( e.g. \) a loudspeaker. For maximum power transfer, the impedance of power source should be equal to that of load. Usually, the impedance of an output device is a few ohms whereas the output impedance of transistor is several hundred times this value. In order to match the impedance, a step-down transformer of proper turn ratio is used. The impedance of secondary of the transformer is made equal to the load impedance and primary impedance equal to the output impedance of transistor. Fig. 11.17 illustrates the impedance matching by a step-down transformer. The output device \( e.g. \) speaker) connected to the secondary has a small resistance \( R_L \). The load \( R'_L \) appearing on the primary side will be:

\[ R'_L = \left( \frac{N_P}{N_S} \right)^2 R_L \]

For instance, suppose the transformer has turn ratio \( N_P : N_S : : 10 : 1 \). If \( R_L = 100 \Omega \), then load appearing on the primary is:

\[ R'_L = \left( \frac{10}{1} \right)^2 \times 100 \Omega = 10 \text{ k}\Omega \]

![Fig. 11.17](image_url)

---

\* There are hundreds of turns of primary and secondary. These turns will multiply an induced e.m.f. from nearby power wiring. As the transformer is connected in the base circuit, therefore, the induced hum voltage will appear in amplified form in the output.

\** Suppose primary and secondary of transformer carry currents \( I_P \) and \( I_S \) respectively. The secondary load \( R_L \) can be transferred to primary as \( R'_L \) provided the power loss remains the same \( i.e., \)

\[ I'_P R'_L = I'_S R_S \]

or

\[ R'_L = \left( \frac{I_S}{I_P} \right)^2 R_L = \left( \frac{N_P}{N_S} \right)^2 R_L \]

\[ \left( \frac{I_S}{I_P} = \frac{N_P}{N_S} \right) \]
Thus the load on the primary side is comparable to the output impedance of the transistor. This results in maximum power transfer from transistor to the primary of transformer. This shows that low value of load resistance (e.g. speaker) can be “stepped-up” to a more favourable value at the collector of transistor by using appropriate turn ratio.

**Example 11.16.** A transformer coupling is used in the final stage of a multistage amplifier. If the output impedance of transistor is 1 kΩ and the speaker has a resistance of 10 Ω, find the turn ratio of the transformer so that maximum power is transferred to the load.

**Solution.**

For maximum power transfer, the impedance of the primary should be equal to the output impedance of transistor and impedance of secondary should be equal to load impedance i.e.

\[
\text{Primary impedance} = \left(\frac{N_P}{N_S}\right)^2 \times \text{Load impedance}
\]

\[
\therefore \quad \left(\frac{N_P}{N_S}\right)^2 = \frac{\text{Primary impedance}}{\text{Load impedance}}
\]

\[
\text{or} \quad n^2 = \frac{1000}{10} = 100
\]

\[
\therefore \quad n = \sqrt{100} = 10
\]

A step-down transformer with turn ratio 10 : 1 is required.

**Example 11.17.** Determine the necessary transformer turn ratio for transferring maximum power to a 16 Ω load from a source that has an output impedance of 10 kΩ. Also calculate the voltage across the external load if the terminal voltage of the source is 10 V r.m.s.

**Solution.**

For maximum power transfer, the impedance of the primary should be equal to the output impedance of the source.

\[
\text{Primary impedance, } R'_L = 10 \text{ kΩ} = 10,000 \text{ Ω}
\]

\[
\text{Load impedance, } R_L = 16 \text{ Ω}
\]

Let the turn ratio of the transformer be \( n = \frac{N_P}{N_S} \).

\[
\therefore \quad R'_L = \left(\frac{N_P}{N_S}\right)^2 R_L
\]

\[
\text{or} \quad \left(\frac{N_P}{N_S}\right)^2 = \frac{R'_L}{R_L} = \frac{10,000}{16} = 625
\]

\[
\text{or} \quad n^2 = 625
\]

\[
\therefore \quad n = \sqrt{625} = 25
\]

Now

\[
V_S = \frac{N_S}{N_P} V_P = \frac{V_P}{25} \times 10 = 0.4 \text{ V}
\]

**Example 11.18.** The output resistance of the transistor shown in Fig. 11.18 is 3 kΩ. The primary of the transformer has a d.c. resistance of 300 Ω and the load connected across secondary is 3 Ω. Calculate the turn ratio of the transformer for transferring maximum power to the load.

**Solution.**

D.C. resistance of primary, \( R_p = 300 \text{ Ω} \)

Load resistance, \( R_L = 3 \text{ Ω} \)
Let \( n \left( = \frac{N_P}{N_S} \right) \) be the required turn ratio. When no signal is applied, the transistor ‘sees’ a load of \( R_P \left( = 300 \, \Omega \right) \) only. However, when a.c. signal is applied, the load \( R_L \) in the secondary is reflected in the primary as \( n^2 R_L \). Consequently, the transistor now ‘sees’ a load of \( R_P \) in series with \( n^2 R_L \).

For transference of maximum power,

\[
\text{Output resistance of transistor} = R_P + n^2 R_L
\]

or

\[
3000 = 300 + n^2 \times 3
\]

or

\[
n^2 = \frac{3000 - 300}{3} = 900
\]

\[
\therefore \quad n = \sqrt{900} = 30
\]

**Example 11.19.** A transistor uses transformer coupling for amplification. The output impedance of transistor is \( 10 \, k\Omega \) while the input impedance of next stage is \( 2.5 \, k\Omega \). Determine the inductance of primary and secondary of the transformer for perfect impedance matching at a frequency of \( 200 \, Hz \).

**Solution.**

Frequency, \( f = 200 \, Hz \)

Output impedance of transistor = \( 10 \, k\Omega = 10^4 \, \Omega \)

Input impedance of next stage = \( 2.5 \, k\Omega = 2.5 \times 10^3 \, \Omega \)

**Primary inductance.** Consider the primary side of the transformer. For perfect impedance matching,

\[
\text{Output impedance of transistor} = \text{Primary impedance}
\]

\[
10^4 = 2 \pi f L_P
\]

\[
\therefore \quad \text{Primary inductance, } L_P = \frac{10^4}{2\pi \times 200} = 8 \, H
\]

**Secondary inductance.** Consider the secondary side of transformer. For impedance matching,

\[
\text{Input impedance of next stage} = \text{Impedance of secondary}
\]

\[
2.5 \times 10^3 = 2 \pi f L_S
\]

\[
\therefore \quad \text{Secondary inductance, } L_S = \frac{2.5 \times 10^3}{2\pi \times 200} = 2 \, H
\]
Example 11.20. In the above example, find the number of primary and secondary turns. Given that core section of the transformer is such that 1 turn gives an inductance of 10μH.

Solution.
We know that inductance of a coil is directly proportional to the square of number of turns of the coil i.e.

\[ L \propto N^2 \]

or

\[ L = K N^2 \]

Now \[ L = 10 \, \mu H = 10^{-5} \, H, \quad N = 1 \text{ turn} \]

\[ 10^{-5} = K (1)^2 \]

or

\[ K = 10^{-5} \]

Primary inductance = \( K N_p^2 \)

or

\[ 8 = 10^{-5} N_p^2 \]

\[ \therefore \text{ Primary turns, } N_p = \sqrt{8 \times 10^5} = 894 \]

Similarly, Secondary turns, \( N_s = \sqrt{2 \times 10^5} = 447 \)

11.7 Direct-Coupled Amplifier

There are many applications in which extremely low frequency (< 10 Hz) signals are to be amplified e.g. amplifying photo-electric current, thermo-couple current etc. The coupling devices such as capacitors and transformers cannot be used because the electrical sizes of these components become very large at extremely low frequencies. Under such situations, one stage is directly connected to the next stage without any intervening coupling device. This type of coupling is known as direct coupling.

Circuit details. Fig. 11.19 shows the circuit of a three-stage direct-coupled amplifier. It uses *complementary transistors. Thus, the first stage uses npn transistor, the second stage uses pnp transistor and so on. This arrangement makes the design very simple. The output from the collector of first transistor \( T_1 \) is fed to the input of the second transistor \( T_2 \) and so on.

Fig. 11.19

* This makes the circuit stable w.r.t. temperature changes. In this connection (i.e., npn followed by pnp), the direction of collector current increase \( \beta \), when the temperature rises, is opposite for the two transistors. Thus the variation in one transistor tends to cancel that in the other.
Principles of Electronics

The weak signal is applied to the input of first transistor $T_1$. Due to transistor action, an amplified output is obtained across the collector load $R_C$ of transistor $T_1$. This voltage drives the base of the second transistor and amplified output is obtained across its collector load. In this way, direct coupled amplifier raises the strength of weak signal.

**Advantages**
(i) The circuit arrangement is simple because of minimum use of resistors.
(ii) The circuit has low cost because of the absence of expensive coupling devices.

**Disadvantages**
(i) It cannot be used for amplifying high frequencies.
(ii) The operating point is shifted due to temperature variations.

**Example 11.21.** Fig. 11.20 shows a direct coupled two-stage amplifier. Determine (i) d.c. voltages for both stages (ii) voltage gain of each stage and overall voltage gain.

![Fig. 11.20](image)

**Solution.** Note that direct-coupled amplifier has no coupling capacitors between the stages.

(i) **D.C. voltages.** We shall now determine the d.c. voltages for both the stages following the established procedure.

**First stage**

D.C. current thro’ $R_1$ and $R_2 = \frac{V_{CC}}{R_1 + R_2} = \frac{12V}{100 \text{ k} \Omega + 22 \text{ k} \Omega} = 0.098 \text{ mA}$

D.C. voltage across $R_2 = 0.098 \text{ mA} \times R_2 = 0.098 \text{ mA} \times 22 \text{ k} \Omega = 2.16V$

This is the d.c. voltage at the base of transistor $Q_1$.

D.C. voltage at the emitter, $V_{E1} = 2.16 - V_{BE} = 2.16V - 0.7V = 1.46V$

D.C. emitter current, $I_{E1} = \frac{V_{E1}}{R_4} = \frac{1.46V}{4.7 \text{ k} \Omega} = 0.31 \text{ mA}$

D.C. collector current, $I_{C1} = 0.31 \text{ mA}$ (Q $I_{C1} \approx I_{E1}$)

D.C. voltage at collector, $V_{C1} = V_{CC} - I_{C1} R_3 = 12V - 0.31 \text{ mA} \times 22 \text{ k} \Omega = 5.18V$

**Second stage**

D.C. base voltage $= V_{C1} = 5.18V$

D.C. emitter voltage, $V_{E2} = V_{C1} - V_{BE} = 5.18V - 0.7V = 4.48V$
D.C. emitter current, \( I_{E2} = \frac{V_{E2}}{R_6} = \frac{4.48V}{10 \, \text{k}\Omega} = 0.448 \, \text{mA} \)

D.C. voltage at collector, \( V_{C2} = V_{CC} - I_{C2} R_5 \) (Q \( I_{E2} \approx I_{C2} \))
\( = 12V - 0.448 \, \text{mA} \times 10 \, \text{k}\Omega = 7.52V \)

**Voltage gain** To find voltage gain, we shall use the standard formula: total a.c. collector load divided by total a.c. emitter resistance.

**First stage**
\( r'_{e1} = \frac{25 \, \text{mV}}{I_{E1}} = \frac{25 \, \text{mV}}{0.31 \, \text{mA}} = 80.6 \, \text{Ω} \)

Input impedance \( Z_{in} \) of the second stage is given by:
\( Z_{in} = \beta r'_{e2} \)
\( = \frac{25 \, \text{mV}}{0.448 \, \text{mA}} = 55.8 \, \text{Ω} \)
\( \therefore \) Total a.c. collector load, \( R_{AC} = R_5 || Z_{in} = 22 \, \text{k}\Omega || 7 \, \text{k}\Omega = 5.31 \, \text{k}\Omega \)

Voltage gain, \( A_{v1} = \frac{R_{AC}}{r'_{e1}} = \frac{5.31 \, \text{k}\Omega}{80.6 \, \text{Ω}} = 66 \)

**Second stage.** There is no loading effect of any subsequent stage. Therefore, total a.c. collector load, \( R_{AC} = R_5 = 10 \, \text{k}\Omega \).

Voltage gain, \( A_{v2} = \frac{R_5}{r'_{e2}} = \frac{10 \, \text{k}\Omega}{55.8 \, \text{Ω}} = 179 \)

Overall voltage gain = \( A_{v1} \times A_{v2} = 66 \times 179 = 11,814 \)

### 11.8 Comparison of Different Types of Coupling

<table>
<thead>
<tr>
<th>S. No</th>
<th>Particular</th>
<th>RC coupling</th>
<th>Transformer coupling</th>
<th>Direct coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Frequency response</td>
<td>Excellent in the audio frequency range</td>
<td>Poor</td>
<td>Best</td>
</tr>
<tr>
<td>2.</td>
<td>Cost</td>
<td>Less</td>
<td>More</td>
<td>Least</td>
</tr>
<tr>
<td>3.</td>
<td>Space and weight</td>
<td>Less</td>
<td>More</td>
<td>Least</td>
</tr>
<tr>
<td>4.</td>
<td>Impedance matching</td>
<td>Not good</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>5.</td>
<td>Use</td>
<td>For voltage amplification</td>
<td>For power amplification</td>
<td>For amplifying extremely low frequencies</td>
</tr>
</tbody>
</table>

### 11.9 Difference Between Transistor and Tube Amplifiers

Although both transistors and grid-controlled tubes (e.g. triode, tetrode and pentode) can render the job of amplification, they differ in the following respects:

(i) The electron tube is a voltage driven device while transistor is a current operated device.

(ii) The input and output impedances of the electron tubes are generally quite large. On the other hand, input and output impedances of transistors are relatively small.

(iii) Voltages for transistor amplifiers are much smaller than those of tube amplifiers.

(iv) Resistances of the components of a transistor amplifier are generally smaller than the resistances of the corresponding components of the tube amplifier.
The capacitances of the components of a transistor amplifier are usually larger than the corresponding components of the tube amplifier.

**MULTIPLE-CHOICE QUESTIONS**

1. A radio receiver has .......... of amplification.
   (i) one stage (ii) two stages (iii) three stages (iv) more than three stages
2. $RC$ coupling is used for .......... amplification.
   (i) voltage (ii) current (iii) power (iv) none of the above
3. In an $RC$ coupled amplifier, the voltage gain over mid-frequency range ......
   (i) changes abruptly with frequency (ii) is constant (iii) changes uniformly with frequency (iv) none of the above
4. In obtaining the frequency response curve of an amplifier, the ........
   (i) amplifier level output is kept constant (ii) amplifier frequency is held constant (iii) generator frequency is held constant (iv) generator output level is held constant
5. An advantage of $RC$ coupling scheme is the .......... (i) good impedance matching (ii) economy (iii) high efficiency (iv) none of the above
6. The best frequency response is of .......... coupling.
   (i) $RC$ (ii) transformer (iii) direct (iv) none of the above
7. Transformer coupling is used for .......... amplification.
   (i) power (ii) voltage (iii) current (iv) none of the above
8. In an $RC$ coupling scheme, the coupling capacitor $C_c$ must be large enough ......
   (i) to pass d.c. between the stages (ii) not to attenuate the low frequencies (iii) to dissipate high power (iv) none of the above
9. In $RC$ coupling, the value of coupling capacitor is about .......... (i) 100 pF (ii) 0.1 $\mu$F (iii) 0.01 $\mu$F (iv) 10 $\mu$F
10. The noise factor of an ideal amplifier expressed in $db$ is .......... (i) 0 (ii) 1 (iii) 0.1 (iv) 10
11. When a multistage amplifier is to amplify d.c. signal, then one must use .......... coupling.
   (i) $RC$ (ii) transformer (iii) direct (iv) none of the above
12. .......... coupling provides the maximum voltage gain.
   (i) $RC$ (ii) transformer (iii) direct (iv) impedance
13. In practice, voltage gain is expressed .......... (i) in $db$ (ii) in volts (iii) as a number (iv) none of the above
14. Transformer coupling provides high efficiency because .......... (i) collector voltage is stepped up (ii) d.c. resistance is low (iii) collector voltage is stepped down (iv) none of the above
15. Transformer coupling is generally employed when load resistance is .......... (i) large (ii) very large (iii) small (iv) none of the above
16. If a three-stage amplifier has individual stage gains of 10 $db$, 5 $db$ and 12 $db$, then total gain in $db$ is ........
   (i) 600 $db$ (ii) 24 $db$ (iii) 14 $db$ (iv) 27 $db$
17. The final stage of a multistage amplifier uses .......... (i) $RC$ coupling (ii) transformer coupling (iii) direct coupling (iv) impedance coupling
18. The ear is not sensitive to........
   (i) frequency distortion
   (ii) amplitude distortion
   (iii) frequency as well as amplitude distortion
   (iv) none of the above
19. RC coupling is not used to amplify extremely low frequencies because .......
   (i) there is considerable power loss
   (ii) there is hum in the output
   (iii) electrical size of coupling capacitor becomes very large
   (iv) none of the above
20. In transistor amplifiers, we use ........ transformer for impedance matching.
   (i) step up  (ii) step down
   (iii) same turn ratio  (iv) none of the above
21. The lower and upper cut off frequencies are also called ........ frequencies.
   (i) sideband  (ii) resonant
   (iii) half-resonant  (iv) half-power
22. A gain of 1,000,000 times in power is expressed by ........
   (i) 30 db  (ii) 60 db
   (iii) 120 db  (iv) 600 db
23. A gain of 1000 times in voltage is expressed by ...........
   (i) 60 db  (ii) 30 db
   (iii) 120 db  (iv) 600 db
24. 1 db corresponds to ........... change in power level.
   (i) 50%  (ii) 35%
   (iii) 26%  (iv) 22%
25. 1 db corresponds to ........ change in voltage or current level.
   (i) 40%  (ii) 80%
   (iii) 20%  (iv) 25%
26. The frequency response of transformer coupling is ........
   (i) good  (ii) very good
   (iii) excellent  (iv) poor
27. In the initial stages of a multistage amplifier, we use ........
   (i) RC coupling
   (ii) transformer coupling
   (iii) direct coupling
   (iv) none of the above
28. The total gain of a multistage amplifier is less than the product of the gains of individual stages due to .......
   (i) power loss in the coupling device
   (ii) loading effect of next stage
   (iii) the use of many transistors
   (iv) the use of many capacitors
29. The gain of an amplifier is expressed in db because ........
   (i) it is a simple unit
   (ii) calculations become easy
   (iii) human ear response is logarithmic
   (iv) none of the above
30. If the power level of an amplifier reduces to half, the db gain will fall by ........
   (i) 0.5 db  (ii) 2 db
   (iii) 10 db  (iv) 3 db
31. A current amplification of 2000 is a gain of ...........
   (i)3  (ii) 66
   (iii) 20  (iv) 200
32. An amplifier receives 0.1 W of input signal and delivers 15 W of signal power. What is the power gain in db ?
   (i) 21.8 db  (ii) 14.6 db
   (iii) 9.5 db  (iv) 17.4 db
33. The power output of an audio system is 18 W. For a person to notice an increase in the output (loudness or sound intensity) of the system, what must the output power be increased to ?
   (i) 14.2 W  (ii) 11.6 W
   (iii) 22.68 W  (iv) none of the above
34. The output of a microphone is rated at –52 db. The reference level is 1 V under specified sound conditions. What is the output voltage of this microphone under the same sound conditions ?
   (i) 1.5 mV  (ii) 6.2 mV
   (iii) 3.8 mV  (iv) 2.5 mV
35. RC coupling is generally confined to low power applications because of .......
   (i) large value of coupling capacitor
   (ii) low efficiency
   (iii) large number of components
   (iv) none of the above

36. The number of stages that can be directly coupled is limited because .......
   (i) changes in temperature cause thermal instability
   (ii) circuit becomes heavy and costly
   (iii) it becomes difficult to bias the circuit
   (iv) none of the above

37. The purpose of RC or transformer coupling is to ........
   (i) block a.c.
   (ii) separate bias of one stage from another
   (iii) increase thermal stability
   (iv) none of the above

38. The upper or lower cut off frequency is also called ........ frequency.
   (i) resonant  (ii) sideband
   (iii) 3 db  (iv) none of the above

39. The bandwidth of a single stage amplifier is ....... that of a multistage amplifier.
   (i) more than  (ii) the same as
   (iii) less than  (iv) data insufficient

40. The value of emitter capacitor $C_E$ in a multi-stage amplifier is about ...........
   (i) 0.1 $\mu$F  (ii) 100 pF
   (iii) 0.01 $\mu$F  (iv) 50 $\mu$F

---

Answers to Multiple-Choice Questions

1. (iv)  2. (i)  3. (ii)  4. (iv)  5. (ii)  
6. (iii)  7. (i)  8. (ii)  9. (iv)  10. (i)  
11. (iii)  12. (ii)  13. (i)  14. (ii)  15. (iii)  
16. (iv)  17. (ii)  18. (i)  19. (iii)  20. (ii)  
21. (iv)  22. (ii)  23. (i)  24. (iii)  25. (i)  
26. (iv)  27. (i)  28. (ii)  29. (iii)  30. (iv)  
31. (ii)  32. (i)  33. (iii)  34. (iv)  35. (ii)  
36. (i)  37. (ii)  38. (iii)  39. (i)  40. (iv)  

Chapter Review Topics

1. What do you understand by multistage transistor amplifier? Mention its need.
2. Explain the following terms: (i) Frequency response (ii) Decibel gain (iii) Bandwidth.
3. Explain transistor RC coupled amplifier with special reference to frequency response, advantages, disadvantages and applications.
4. With a neat circuit diagram, explain the working of transformer-coupled transistor amplifier.
5. How will you achieve impedance matching with transformer coupling?
6. Explain direct coupled transistor amplifier.

Problems

1. The absolute voltage gain of an amplifier is 73. Find its decibel gain. [37 db]
2. The input power to an amplifier is 15mW while output power is 2W. Find the decibel gain of the amplifier. [21.25 db]
3. What is the $db$ gain for an increase of power level from 12W to 24W? [3 db]
4. What is the $db$ gain for an increase of voltage from 4mV to 8mV? [6 db]
5. A two-stage amplifier has first-stage voltage gain of 20 and second stage voltage gain of 400. Find the total decibel gain. [78 db]
6. A multistage amplifier consists of three stages; the voltage gain of stages are 60, 100 and 160. Calculate the overall gain in \( \text{db} \).

\[ 119.64 \text{db} \]

7. A multistage amplifier consists of three stages; the voltage gains of the stages are 30, 50 and 60. Calculate the overall gain in \( \text{db} \).

\[ 99.1 \text{db} \]

8. In an RC coupled amplifier, the mid-frequency gain is 2000. What will be its value at upper and lower cut-off frequencies?

\[ 1414 \]

9. A three-stage amplifier employs RC coupling. The voltage gain of each stage is 50 and \( R_C = 5 \text{k} \Omega \) for each stage. If input impedance of each stage is 2 \( \text{k} \Omega \), find the overall decibel voltage gain.

\[ 80 \text{ db} \]

10. We are to match a 16\( \Omega \) speaker load to an amplifier so that the effective load resistance is 10 k\( \Omega \). What should be the transformer turn ratio?

\[ 25 \]

11. Determine the necessary transformer turn ratio for transferring maximum power to a 50 ohm load from a source that has an output impedance of 5 k\( \Omega \). Also find the voltage across the external load if the terminal voltage of the source is 10V r.m.s.

\[ 10, 1V \]

12. We are to match an 8\( \Omega \) speaker load to an amplifier so that the effective load resistance is 8 k\( \Omega \). What should be the transformer turn ratio?

\[ 10 \]

**Discussion Questions**

1. Why does RC coupling give constant gain over mid-frequency range?
2. Why does transformer coupling give poor frequency response?
3. How will you get frequency response comparable to RC coupling in a transformer coupling?
4. Why is transformer coupling used in the final stage of a multistage amplifier?
5. Why do you avoid RC or transformer coupling for amplifying extremely low frequency signals?
6. Why do you prefer to express the gain in \( \text{db} \)?