| 
 SPOTTHE MISTAKES!
 Page 25
 
  
 		Page 1  
 Page 2   
 Page 3   
  Page 4    
  Page 5  
  Page 6  
  Page 7  
  Page 8  
  Page 9Page 10  
  Page 11  
  Page 12  
  Page 13  
  Page 14  
  Page 15  
  Page 16  
  Page 17
 Page 18 
  Page 19  
  Page 20 
  Page 21 
  Page 22 
  Page 23 
  Page 24    
  Page 26
 Page 27 
  Page 28 
  Page 29 
  Page 30
  
 		 Some readers have asked why I don't include any formulas in the articles. It's simple.
 I would lose 99% of the readers.
 I am not trying to make you a University scholar.
 You can find all the mathematical approaches to electronics on the web and 
	in every text book.
 It's pointless doubling-up on what's already there.
 But the funny thing is this: many of those providing answers to simple 
	problems on the electronics forums can answer the mathematical questions but 
	stumble terribly when trying to provide a circuit to perform a simple task.
 They over-design, use an op-amp when a simple transistor will work perfectly 
	and use component-values that are not in the normal range.
 You can see instantly they have never deigned a circuit in their life, and 
	relied on application notes to get them through.
 That's why there are so few text books with practical applications.
 As soon as they include a circuit that has not been tested, you can see 
	their inability to "see" a circuit working.
 This is the basis to what we are teaching at Talking Electronics.
 The skill to be able to SEE a circuit working and thus fix, mend, design and 
	modify circuits.
 I know this is a skill, but it is the answer to being able to design.
 It comes well-ahead of being able to carry out the mathematics as you are 
	in-effect carrying out the mathematics "in your head" by assessing the 
	current and voltage at each point in a circuit by looking at the resistor 
	and capacitor values.
 That's why this section on Spot The Mistake is so important.
 It shows you how to spot a Mistake and see how and why others have made 
	mistakes in their design.
 It is an area that no-one has thought-of before.
 We started this concept 30years ago when we included a section IF IT DOESN'T 
	WORK, in all the projects.
 Every project in a magazine expects the project will work.
 But what if it doesn't work??
 The only time you start to learn electronic is when you have to fix 
	something.
 And that's where most authors fall down.
 They don't have the engineering skills to work through a project, using some 
	part of the project as a piece of "test equipment."
 It might be a LED or a speaker, giving a sound or flashing.
 Or you can use a multi-meter or logic probe to diagnose the problem.
 But the important point is NOT TO GIVE UP.
 
 
  
 The mobile phone and the internet has increased communication between people 
	over  1,000%. Whereas a few landline calls and letters were the only 
	communication, we now have instant messaging where you can contact any one 
	and any business anywhere throughout the world, in a matter of seconds.
 The only problem is the sorting through the spam to get the actual requests 
	from readers.
 Sometimes, the bulk elimination of junk emails deletes a genuine request, 
	but that's the price you have to pay for progress.
 There are a lot more Chinese kits coming on the market at prices below the 
	cost of components and these kits are very good value.
 The only problem is the instructions.
 Many do not come with instructions, especially set-up details and this is 
	holding-back their sales.
 Most of the kits work very well, although some could be improved.
 It's only through the universality of electronics that it has exploded 
	throughout the world. Imagine if we had 4 different resistor colour codes or 
	5 different component spacings.
 We would be like the car industry, where nothing fits, from one model to 
	another or one make to another.
 Electronics would be as expensive as a BMW.
 And if component symbols were a jumble, we would never be able to produce 
	these Spot The Mistakes pages.
 
 
STATISTICSScientists (including electronics engineers) 
tend to disregard statistics as a "voo doo hypothetical imaginary invention" to 
con the unsuspecting.
 Statistics is the generation of figures and numbers from one source and looking 
at the trend to apply the same reasoning to another identical or similar 
situation.
 Take for instance, the number of readers who look at Talking Electronics 
transistor articles each day. Out of the 100,000 different readers who have 
visited the website, we get exactly 276 readers who look at the transistor 
article each day.
 And the same applies to the 55 article. The rise and fall is very small.
 Now we take EVERYDAY PRACTICAL ELECTRONICS with their TEACHIN-2015 set of 
articles. They say the series has been very successful.
 But when you go to their website and look at the Forum, you will not find one 
enquiry about the series in the past 6 months.
 In previous years the Forum has received several hundred enquiries.
 What has happened?
 Electronics has died.
 The percentage of enthusiasm and construction has fallen from an initial 100% 
(1940 to 1980) to less than 10%,  maybe 5%, maybe 2%.
 Other things have taken over. Apps, games, 3D TV, Face book, have reached 
astronomical proportions where people are glued to their seat for 10 hours a day 
interacting on trivial matters with others in their group.
 The decline in the interest in science has reached such a low point that some 
governments are now starting to tackle the problem by allocating new funding to 
this area.
 I don't know whether this is necessary as great inventions and improvements will 
always come from the most unsuspecting quarters, however it is important to 
remind everyone that science is one of the most important studies in the 
education of man.
 It was in the fore, 50 years ago with every school being provided with 2 new 
science classrooms and now it has hit the headlines with the theme of teaching 
"coding."
 
 
  
 I got an email today from an Indian person who is obviously a 
 
Cybersquatter.
 
Cybersquatting. Cybersquatting (also known as domain squatting), according to 
the United States federal law known as the Anticybersquatting Consumer 
Protection Act, is registering, trafficking in, or using an Internet domain name 
with bad faith intent to profit from the sale of the website. 
He has bought the name for less than $10.00 from GoDaddy in the hope that some idiot will 
buy it from him for an inflated price.  
Here is his email:
Hi,We are selling domain name 
MyMetalDetector.com,
Would you be interested in acquiring this 
Domain Name?
 Please Advise
 Kind Regards,
 Chandan Mishra
 
I asked him how much he wanted.
 Thanks for reply
 We are just looking $400 for it
 
I told him I would pay $14.chandan@dnavenue.com is doing.
 He said that was too low.
 
 Then he replied with the auction from GoGaddy where NO BIDS had been recorded 
and his reserve price was $20.00
 Here is the link to the "auction:"
 https://in.auctions.godaddy.com/trpItemListing.aspx?&miid=167759182
 
 What a cheek he had. Trying to get $400 for a website that anyone could buy for 
$1.99 plus a few costs.
 Cyber squatting is considered a crime in the US when a person simply buys a 
domain with the intention of preventing another "genuine" person gaining the 
domain name, and then trying to sell it for an inflated price.
 This is clearly what Chandan Mishra
 
Fortunately he has had no offers and will be stuck with the name until it dies.
Long gone are the days when websites had any value.
 Visitors look on Google for a website and don't type in a URL because the 
slightest mistake will go to the wrong domain.
 He has asked for this EXPOSURE to be deleted. This I will not do as he is 
clearly a FRAUDSTER.
 Even selling the website for $20.00 contravenes the act. The act only states the 
fraudulent INTENTION is punishable. And the act is CYBER SQUATTING.
 It's a pity he does not reside in the US.
 
 
  
 
I got a response from T.K.Hareendran, who has produced a number of faulty 
circuits in EFY and other magazines. He has a very limited understanding of 
electronics as explained on a previous page.  After me exposing his lack of 
understanding of electronics, he got pretty annoyed and sent me this email:
 After reading many of your web gimmicks, we - a group of young Indian 
circuit designers - plan to launch a website against your talking electronics.
 
This will be wonderful to see. Out of the 22 million visitors, no-one has shown 
me any of my "web gimmicks" unless he is talking about the tricky circuits and 
projects I have produced. Along the same lines, one of the editors of Electronics For You, has replied to 
my statement that many of the circuits in the their magazine DO NOT WORK or have 
very poor design-features.
 He comes up with stupid statements such as "All the circuits have been tested" 
and tried to get away with some garbled idea that the circuits are presented for 
experimenters to "tinker with" and improve.
 I have never heard such nonsense and if this were said in any Australian 
magazine, the editor would be hounded off the "reading-list."
 The simple fact is this: Indians have a very poor understanding of electronics 
and you can see this in their projects and writings.
 Projects are presented as the "author's prototype" on breadboard or matrix 
board, with wires and leads going everywhere. It's just a jumble.
 Many of the projects don't have a printed circuit board or the availability of a 
kit of components.
 Kits and Spares is the only supplier of some of the kits and they want $50.00 
postage for a $5.00 kit  !!!
 There has NEVER been an electronics instructional article in EFY magazine and 
the details of the operation of most circuits is very minimal.
 In some cases they devote less than 6 pages of the whole magazine, to 
construction.
 It is glaringly obvious that they are struggling to present technical 
information and the Indian hobbyist is suffering enormously.
 They have never challenged any of the comments I have made nor provided me with 
the email address of any of the authors of the projects, so I can correct their 
work.
 The editors of the magazine have never heard of "DESIGN CONCEPTS" where the 
value of a component is determined by the job it is intended to do.
 Putting 0.22u on a 100MHz line or 10 ohm in a 300mA line shows a complete lack 
of electronics understanding.
 This is the sort of thing we are exposing in these pages and "SPOT THE MISTAKES" 
allows us to cover all those things that don't fit into any of the other pages.
 That's why we have reached page 25 !!
 
  
 The only way to avoid debt is save money from the first day you start 
work.
 And the second way is to have a trade or 
qualification.
 
  It 
doesn't matter if it is electrical, electronic, mechanical or building, welding, 
painting or brick-laying. Build up a skill in 1, 2 or 3 fields and you will have an inside/outside job and 
business/career for the rest of your life.
 It's only those who waste their life from 14 to 18 that suffer the rest of their 
time with patchy employment.
 Of course it would be wonderful to be a lawyer, doctor, dentist, investment 
consultant, physiatrist or politician, but those lucky breaks are only available 
to very few.
 The rest of us have to get educated the hard way and make a success of life in 
these extremely hard times.
 Business, work and opportunities are actually 5 times more difficult to achieve 
than 30 years ago.
 You have to be 3 times smarter than the previous generation to get ahead.
 The reason is the conglomerates have taken over nearly all the lucrative areas 
of business including discount selling and enormous construction ventures,
 Even the areas for promoting electronics are miniscule compared to 30 years ago.
 That's why you have to be so clever.
 
 
If electronic circuits could be explained like this: 
Everyone would be able to understand them.
 
	
	
 
		Pearls of Wisdom 
 1. 42.7 percent of all statistics are made up on the spot.
 2. 99 percent of lawyers give the rest a bad name.
 3. Remember, half the people you know are below average.
 4. He who laughs last, thinks slowest.
 5. The early bird may get the worm, but the second mouse gets the cheese 
		in the trap.
 6. Support bacteria. They're the only culture some people have.
 7. A clear conscience is usually the sign of a bad memory.
 8. Change is inevitable, except from vending machines.
 9. How many of you believe in psycho-kinesis? Raise my hand.
 10. When everything is coming your way, you're in the wrong lane.
 11. Hard work pays off in the future. Laziness pays off now.
 12. On the other hand, you have different fingers.
 13. What happens if you get scared half to death, twice?
 14. Why do psychics have to ask you for your name?
 15. Inside every older person is a younger person wondering, "What the 
		heck happened?"
 16. Light travels faster than sound. That's why some people appear 
		bright until you hear them speak.
 17. Life isn't like a box of chocolates. It's more like a jar of 
		jalapenos. What you do today, might burn you tomorrow.
   
BRIDGE 
 
This bridge might work or it may not.There are two things you have to remember when designing a bridge.
 A motor takes 10 times more current when starting, than when it is at full RPM 
and the current can increase 5 -10 times when the motor is under load.
 The transistors in the bridge have to deliver this current and a BC547 is only 
capable of delivering 100mA under the best conditions.
 It is difficult to know how much current each transistor is capable of 
delivering in the bridge circuit above, however the top two transistors are 
EMITTER FOLLOWERS and the 510ohm resistor in the base is effectively reduced by 
100 by the gain of the transistor to become equivalent to 5 ohms.
 The resistance (impedance) of a motor is about 5 ohms and this will reduce the 
current.  The transistor in this circuit will have the biggest effect on 
reducing the current-flow to a maximum of about 100mA.
 
 
  
 
	
		
		This circuit can be simplified by removing the two lower transistors and 
adding the red signal diode.The two lower transistors are simply turning the output ON and OFF and this can 
be done with the red diode.
 This diode is called a GATING DIODE and prevents the output transistors 
delivering a signal to the speaker when the cathode of the diode is taken to 0v. 
The two lower transistors and two resistors are removed.
 This is the accepted way to gate the output. It is called "AND" gating.
 
	
		
		 
	
		OP AMP 
 
	
		 
	
		Can you see purpose of the 10k pot?If you turn the pot towards the 5v rail, the LED will illuminate. A 
		small rotation of the pot will reduce the brightness considerably.  
		So we will turn it to the other end.
 When the pot is fully turned to the output of the Op-amp, the circuit 
		will work, but the slightest rotation of the pot will reduce the 
		brightness considerably.
 What is the purpose of the 10k pot?
 
	
		 
	
		2 DIGIT COUNTER 
	
		 
	
		 
	
		Here's something new!!!   It appears the block diagram of the 
		CD4026 is back-to-front in the circuit diagram above. You are looking at 
		the underside of the chip!!!This is NOT how to represent a chip.
 All chips are looked-at from the top and pin 1 is always on the left of 
		the diagram.
 If you don't have a standard way to represent things in electronics, it 
		gets very confusing.
 You will also notice pin 8 of the chip is not connected.  The chip 
		will not work with pin 8 not connected to 0v rail.
 
  
	
		CROSSING LIGHTS 
	
		 
	
		The circuit above can be simplified: 
	
		 
	
		 
	
		MAGIC EYE 
	
		 
	
		Two faults with this circuit.1. The 1k supply resistor and 1k resistor to the base of the transistor 
		will form a voltage divider that will only deliver 2.5v to the chip.
 2. When pin 3 of the 555 goes HIGH, the UM66 music chip will see a 
		reverse voltage as the "earth pin" will see 5v and the supply pin will 
		see about 2.5v. This may produce a high current through the chip. I have 
		not tried connecting the chip around the wrong way !!!
 
  
	
		NUMBERS GAME 
	
		 
	
		Three faults with this circuit.1. I do not know how the TOUCH STOP works.   The output of pin 
		3 of the 555 is a low impedance pin so touching the wire will have no 
		effect.
 2. No current limiting resistor for the LEDs on the CD4017.  This 
		resistor is not essential as the chip can only deliver about 10mA from 
		an output line, but adding the resistor puts less strain on the FETs 
		inside the chip.
 3. No current-limiting resistors between the CD4033 and the 7-segment 
		display. Without the resistors, the LEDs will be extra bright and the 
		additional current may put a strain on the CD4033 IC.
 The circuit is designed by an incompetent hobbyist and should be removed 
		from the web.
 
	
		 
	
		MOTOR CONTROLLER 
	
		 
	
		Look at the circuit carefully and you will see the L293D chip is not 
		needed. The 555 is capable of delivering 200mA and if the motor needs up 
		to 200mA, it can be connected to the DPDT switch and the L293D removed.The L293D loses 1v when the output is HIGH and 1v on the LOW output. 
		This means the maximum output voltage will be 3v.
 If the DPDT switch is placed after the L293D IC, the voltage will be 4v.
 
 
  
	
		3 TRANSISTOR AMPLIFIER  
	
		 
	
		This circuit was found on an electronics forum where the person wanted 
		to reduce the distortion. There were a lot of replies including changing the 100R for diodes and 
		adding resistors to reduce the gain.
 But NO-ONE outlined the real reason for the distortion.
 The reason for the distortion is the fact that the output transistors 
		are connected in an arrangement called PUSH PULL.
 When the first transistor is not turned on, the BC337 transistor is 
		pulled HIGH by the 680R resistor. This action pulls the 470u 
		electrolytic HIGH and and current flows through the 8R load.
 During this time the 470U electrolytic charges a small amount.
 When the first transistor turns ON, it pulls the BC327 down with 100 
		times more strength (current) than the current flowing through the 
		collector-emitter terminals of the BC547.
 The BC547 is equal to about 47R resistor.
 This means the "pulling down" is equal to 47R and the "pulling up" is 
		680R.
 Since these are very different values, the current in the 8R load is 
		limited to the weakest part of the cycle - the 680R and this has  
		the greatest effect on producing a faulty output.
 Even though one part of the cycle is 15 times more powerful than the 
		other, the electrolytic can only charge (or rise) to the amount offered 
		by the 680R portion of the cycle and the strong part of the cycle simply 
		discharges the electrolytic.
 But it can discharge it much faster than the charging part of the cycle 
		and this contributes to the distortion.
 
 
  
	
		The circuit works but the description is totally incorrect. The circuit 
		is NOT a Relaxation Oscillator. It is a FEEDBACK OSCILLATOR
 Here is his description:
 The circuit is a simple Relaxation 
		oscillator using two complementary transistors BC 547 and BC 557. 
		Capacitor C1 is doing the trick and it gives the positive feedback to 
		start the oscillation of T1 and T2.
 
 This  is INCORRECT.  R1 starts the circuit working.
 
	
		R1 and C1 form the timing components 
		of the oscillator and with a 330 K resistor (R1) and 10 uF capacitor 
		(C1) the LED blinks around
		1 Hz rate. This is correct.When power is applied, C1 starts charging via R1. When C1 fully charges,   
		NO.  C1 charges to 0.6v to starts to turn on the first 
		transistor. T1 is an emitter-follower and it rises.  C1 has to keep 
		charging to keepT1 turned ON.
 
 T1 conducts and pulls the base of T2 to ground potential and it also 
		conducts. The collector of T2 gives power to LED and it lights. At the 
		same time C1 discharges through R3.  This is INCORRECT. The 
		voltage on the top of R3 rises and this pushes all the charge in C1 into 
		the base of T1 to keep it turned on. Eventually all the charge is 
		removed and T1 starts to turn OFF.
 
	
		So T1 and T2 turn off. This turns off LED. Again C1 starts charging and 
		the cycle repeats making the LED blink continuously. 
	
		 
	
		BATTERY MONITOR by D Mohankumar 
	
		 
	
		The circuit will activate when the battery goes below 8v. This is too 
		low for the 12v battery. The resistors can be 0.25 watt
 
	
		Look at this faulty description:Zener diode is a special kind of diode that conducts only when it gets a 
		voltage more than its rated voltage. For example, a 7.5 Volt Zener diode 
		used in the circuit requires more than 8.5 volts for its smooth 
		conduction. That means, the Zener requires + 1 or 1.5 volt excess than 
		its rated value for proper conduction.
 
 What RUBBISH !!
 Why have a 7.5v zener diode if it works at 8.5v ???
 A zener diode produces a voltage across it VERY CLOSE to its printed 
		value.  That's why you can create an accurate 12v supply when using 
		a 12v zener diode.
 
 What Indian school of electronics did Professor Mohankumar teach at  
		?????
 
 
  
	
		
		POWER SUPPLY by D Mohankumar 
	
		 
	
		Every circuit by Mohankumar contains faults. Look at this Power Supply circuit.
 The purpose of any electrolytic in a power supply is to store energy and 
		reduce the ripple. That's what the electrolytic in this circuit is 
		doing.
 To take advantage of its stored energy, you must connect directly across 
		the electrolytic. The 470R resistor is NOT NEEDED. It turns this power 
		supply into a USELESS POWER SUPPLY.
 The current through the 9v zener is 35mA.
 As soon as you put a load as little as 250 ohms on the output, the 
		current through the LOAD will be 35mA and any further LOAD will start to 
		reduce the output voltage.
 If you put extra LOAD on the circuit, the current will not increase but 
		the output voltage will reduce.
 What happens is this: A 250R load in series with 470R produces a voltage 
		of 9v at their join.
 As soon as you reduce the 250R, the zener drops out of regulation and 
		the voltage across the LOAD decreases.
 
 In his article, he tests the output of the power supply WITHOUT A LOAD 
		and comes up with stupid decisions about how much current will be 
		available at the output.
 Tell him to learn how to test a circuit. I am sick of emailing him. I 
		have emailed him for the past 3 years. He never listens.
 
 Mohankumar does not check or test any of his circuits CORRECTLY and he 
		keeps putting his RUBBISH on the web. He has been told to test his 
		circuits and all his Indian friends keep supporting him, saying how 
		wonderful his circuits are. You decide.
 
	
		 
	
		
		POWERING A LED by D Mohankumar 
	
		  
	
		 
	
		When will we get rid of this idiot Mohnakumar. Here he is with more of his RUBBISH.
 The image shows a white LED powered from 3v via an IC AMC 7135.
 The AMC 7135 is a constant current chip capable of delivering a constant 
		350mA to a 1wattLED.
 A 1 watt white LED has a characteristic voltage across it when the 
		current is more than about 100mA of about 3.2v and this increases to 
		about 3.6v when 350mA flows.
 But when you reduce the current to less than 50mA, the characteristic 
		voltage across the LED is about 3v.
 This means you can directly supply the LED with 3v and about 20mA flows.
 YOU DO NOT NEED THE AMC 7135 IC !!!!
 The IC just makes the LED dimmer as it drops about 120mV !!!
 This circuit that the idiot Mohnakumar has produced is absolute RUBBISH 
		!!!!
 I don't know how he can get everything SO WRONG !!!!
 
	
		 
	
		Just because the IC will work down to 2.7v,  Mohnakumar thinks you 
		can drive a 1 watt LED from 2.7v.  But most 1 watt LEDs are white 
		and they have a characteristic voltage across them of 3.6v.
 When will he learn  ????
 
	
		 
	
		
		CAPACITOR-FED POWER SUPPLY 
		by D Mohankumar 
	
		 
	
				Here is a capacitor-fed power supply by D Mohankumar.
In his
		
		article he tries to explain how a capacitor passes a certain current 
				according to its value.
 But he still has no idea how the circuit works. Look at the 
				circuit above.
 He correctly states the current delivered by a 105 
				(1u) capacitor will be 60mA to 70mA, BUT he also states the 
				output voltage will be 30v to40v.
 How does he come up with this value  ????
 The output voltage of a capacitor-fed power supply will be 340v 
				DC (if nothing is connected to the output) and the LOAD 
				determines the actual voltage.
 The load is the LED and 1k resistor. If 70mA is available, ALL 
				this current will flow through the 1k resistor and the voltage 
				developed across it will be 70v !!!!!
 The current through the LED will be 70mA and the LED WILL 
				BLOW UP. !!!!!!
 That's how little Professor Mohankumar knows about electronics  
				!!!!
 He is so dangerous he should not be on the web.   It's 
				IDIOTS like him that give the web a bad name.
 He is totally uneducated and does not understand the simplest 
				electrical engineering problem.
 
 Here is more RUBBISH from him:
 
	
				 
	
				He says: When a capacitor (C) and a resistor (R) are 
				connected to AC lines, a constant current can be maintained 
				through the resistor (R) so long as the “Reactance” of the 
				Capacitor is greater than the “resistance” of the Resistor.
 What RUBBISH.
 Suppose the resistance of R is LOW and 60mA flows through 
				it.
 Suppose R is increased and 125v appears across it. The current 
				will be 30mA.
 If we go to the extreme and use a very high value for R, the 
				voltage across R will be 230v and NO CURRENT WILL FLOW.
 This is simple to understand. A high value LOAD is just like NO 
				load AT ALL and the output voltage will rise.
 If you have NO load, it means NO current will flow through the 
				capacitor and thus NO voltage will be dropped across it. The 
				capacitor is really like a 10k resistor for part of the cycle 
				and if NO current flows through the 10k resistor, there will be 
				NO voltage dropped across it and thus the output voltage will be 
				as high as the input voltage.
 
 Professor Mohankumar did not even bother to look at the logics 
				of the circuit and came up with an absurd statement. This is why he 
				should not be on the web !!!    He is a FRAUD. A 
				person with NO electronics ability masquerading as a 
				professional. He doesn't even make corrections to his projects 
				after he is informed of his mistakes. That's the CRIMINAL part. 
				He KNOWS he is supplying faulty information.
 
 The fact is this: As the output voltage increases, the current 
				capability of the circuit decreases, but since you have a large 
				voltage available, this reduction in current is not really 
				noticed.
 
 
  
 Text books just give you examples of circuits that work.  
				We give you examples of circuits THAT DON'T WORK.
 You learn more from a FAULTY circuit than a circuit that works.
 It was only after starting to fix faulty black and white TV sets 
				that I realised by degree in electronics was almost worthless.
 The attitude of the lecturer was this:  ANYTHING YOU BUILD 
				WILL WORK  !!!!   What a BIG mistake.
 
 
  
	
		Here's a  Joule Thief circuit using an inductor. The position of 
		the 1N4148 looks to be rather unusual and I had to look at the circuit 
		for 5 minutes before I realised it was preventing the 10u 
		discharging via the inductor and so I re-positioned it to show exactly 
		what it was doing.That's why you have to draw a circuit using a placement and CONVENTION that everyone 
		recognises.
 
	
		 
	
	Every component needs to be placed in a position on a circuit so its 
		function is immediately recognised.I can now see how the circuit works::
 
	
		 
	
	The next change to the circuit is the BC557. It is not needed. The photo-cell can be re-positioned and the transistor removed to create the 
		following circuit: 
 
	
		 
	
		The circuit above is a really bad design..It does not have what we call REGENERATION.
 Regeneration is a feature of a circuit that uses positive feedback to 
		improve the amplitude of the output. In the circuit above, the output 
		transistor is turned on via the 1k resistor when the first transistor is 
		turned off.
 And when the first transistors is turned ON, the second transistor is 
		turned OFF but the current through the 1k is wasted.
 In the circuit below, the transistor gets turned ON a little via the 
		2k7 and then it gets turned ON more and more by the voltage produced in 
		the 40 turn winding.  The 10n is to stop the current generated by 
		the feedback winding being lost in the 2k7. Thus the extra current fed 
		into the base of the second transistor is only produced during the time 
		when it is needed.
 When the circuit is turned OFF, the voltage 
		in the 40 turn winding is produced in the opposite direction and no 
		current flows into the 2k7, due to the capacitor, again. Thus this type of arrangement is much more 
		efficient than using a 1k resistor and shorting the current from it to 
		0v rail, to divert it from the base of the output transistor. This is 
		like shorting your incoming 230v mains to ground so you don't get any 
		electricity when you don't want it !!!
 It might seem insignificant, but when you understand these 
		things, you can see how brilliant designers and engineers have created 
		DC to DC power supplies with 90% efficiency and CFL's with 95% efficiency.   
		When you go from 10mW to 10 watts to 100 watts to 10,000 watts, getting 
		rid of unwanted heat is a big problem.
 And the understanding all starts with a 10mW inverter..
 
	
		 
	
		This circuit produces a brighter illumination from TWO LEDs while using 
		the same current as the previous circuit.  
	
		 
	
		
		POWER SUPPLY by D Mohankumar 
	
		 
	
		Only 2 faults with this circuit.The 12v unregulated will be about 16v and the 3v to 3.8v will be 2.9v to 
		3.1v
 
 
  
	
		
		SUNSET LAMP by D Mohankumar 
	
		 
	
		The circuit is over-designed.  It just needs 2 transistors: 
	
		 
	
		The first circuit takes 10mA via the 555 all the time. The second 
		circuit takes less current.The diode across the relay is not needed because the transistor switches 
		at a very slow rate.
 The 100u is in a bad position in the first circuit. It has a much bigger 
		effect in the second circuit and can be replaced with 10u.
 If
				Professor Mohankumar knew anything about circuit design, how 
		would not make these mistakes.
 
	
		 
	
		BED ALARM
		  Here's another totally impractical project from  T.K.HAREENDRAN He has used a 28 pin microcontroller where an 8 pin 
chip will do the job.
 He has used exotic diodes, whereas a simple 1N4004 will do the job and a 
		regulator that you will have to buy from a large wholesaler.
 He obviously gets his parts for FREE by claiming to be a "writer" and 
		expects INDIAN hobbyists to buy all this expensive stuff to make a 
		simple BED ALARM.
 My father made the same thing 60 years ago with a vibration detector 
		under my bed that makes contacts when I climbed out of the bed. He used 
		a front-door bell that rang and vibrated when I made a lot of movement.
 Firstly, there was no electronics 60 years ago, and a simple vibrating 
		weight and bell is all you need for this project. Think outside the 
		square or "think outside the box" and you will realise how stupid this 
		project is.
 
BED ALARM 
 And he has used a Force Sense Resistor to detect when a child climbs out of a bad.He says to place the resistor near the child's shoulder to detect the load abut 
if you have ever tried to detect a load in a bad you will find this is a very 
difficult thing to do. He has obviously never tested this circuit as a sensor like this is USELESS.
 You need a large sensor made from two sheets of aluminium cooking foil 
		and placed between the sheets is a think layer of black resistance foam 
		as used when placing sensitive chips in foam. This will detect a much 
larger area.
 
     
	
		Conductive foam sheetsElectronics For You have now protected themselves by saying THIS 
		PROJECT HAS NOT BEEN TESTED IN EFY LABORATORIES.
 
  
	
		
		VOLTAGE MONITOR by D MohankumarHere is another untested circuit from the same IDIOT:
 
	
		 
	
		The current through the LED will be more than 100mA. The IC can only 
		output 25mA !!!What does R2 do ???
 
 
	
		 
	
		Ohm's Lawby D Mohankumar 
	
		 
	
		  
	
		Professor Mohankumar doesn't 
		even understand basic mathematics. He is the second Indian "Professor" to fail basic mathematics.
 The terms Vs - Vf must be in brackets so that you work out the answer of 
		(Vs - Vf) and place the answer in the bracket and then perform the 
		division.
 
 
  
	
		
		LED Current by D Mohankumar 
	
		Professor Mohankumar says:
		Current through a LED must be between 10 to 25 Milli Ampere.This is NOT true.  Some ultra bright red LEDs are "too bright" if 
		more than 3mA flows.
 LEDs are becoming more and more efficient and a current as small one to 
		five mA will be sufficient.
 You need to buy and test each LED before deciding on the current 
		required.
 
 Look at this rubbish:
 
 The new type 0.5 and 1 watt White LED requires 100-350 mA current. 
		Forward voltage drop is 3.6v. So the value of the resistor must be very 
		low. Since high current flows through the resistor, the wattage of 
		resistor must be ˝ or 1 watt otherwise, the resistor will heat up and 
		burn. Suppose the current required is 250 mA, then the resistor is
 
 R = (Vs - Vf )/ If = (12 – 3.6) / 0.25 A = 8.4 / 0.25 A = 33.6 Ohms. Use 
		33 Ohms 1 watt resistor
 
 He has not bothered to work out the wattage lost in the resistor  
		!!
 
 The wattage lost in the resistor is:
 Power = (V x V) / 33
 = (8.4 x 8.4) / 33
 =  2.14 watts!!
 
 or:
 
 Power = V x I
 = 8.4 x .25
 = 2.1 watts  !!
 
 He has absolutely no idea what he is doing.
 
 I could "see" the wattage lost in the resistor is more than one watt 
		before starting to work out the actual value. That's why I questioned 
		the answer. And I was right.
 
 That's the skill you have to have. Instead of wasting the energy in a 
		resistor, you should add an extra LED and use the energy as 
		illumination.
 Putting a single LED on 12v is very inefficient and wasteful.
 
	
		
		 
	
		Zener Calculations 
		
		by D Mohankumar 
	
		 
	
		Professor Mohankumar doesn't 
		understand how a zener supply works. And he doesn't understand how to 
		explain its operation.Firstly, the input voltage can come from a 9v supply with a capability 
		of 500mA or 1 amp. Any current capability over about 100mA will work 
		with this circuit.
 He has chosen 120 ohms for the current-limiting resistor and this will 
		allow 32.5mA to flow in the zener.
 (9 - 5.1) / 120 = 32.5mA
 The wattage rating for the zener must allow for the situation where the 
		load is removed and ALL the current flows through the zener.
 The zener rating must be:  5.1 x 32.5 mW   = 165mW   
		Where does he get 500mW ????
 Select 400mW zener.
 The output current can range from 0mA up to 25mA and this current will 
		depend on the LOAD. The zener has no control over the output current.
 The output current robs (takes) current from the zener.
 If the load takes 32.5mA, ALL the current supplied by the current-limit 
		resistor will flow in the LOAD and zero current will flow in the zener.
 If the load wants 35mA, the output voltage will drop to 4.8v.
 As soon as the demand rises above 32.5mA, the zener drops out of 
		regulation and the output voltage drops below 5.1v.
 
 
  
	
		
		HEAT SENSOR 
	
		 
	
		  
	
		 
	
		The original circuit had 10k for the voltage divider resistor for the 
		NTC thermistor. How do you select the value for 
		the Voltage-divider resistor?A reader on the electronics Forum changed the 10k to 100R.
 Let's see how this affects the performance of the thermistor.
 The thermistor and top resistor form a voltage divider.
 When the thermistor heats up, its resistance is reduced.
 The voltage at the join of the two components is reduced.
 For each degree temperature-rise, the voltage will reduce a small 
		amount.
 The value of the top resistor is important.
 If it is very high, the voltage drop will we very small.  If it is 
		very low, the voltage drop will be very small !!!!
 So, it can't be too high or too low.
 When the resistor is equal to the resistance of the thermistor, the 
		voltage-drop will be the largest.
 WHY?
 The two resistors for a voltage divider. This does not mean the voltage 
		is equally divided. It just means the voltage is separated into two 
		parts and we have to work out how much voltage will appear across each 
		resistor.
 When the resistors are equal, the voltage across each is the same and 
		50% of the supply voltage.
 If the thermistor reduces to half the resistance, it will have 33% of 
		the voltage across it.
 In other words, the drop in voltage will be 50 - 33 = 17%.
 If the resistor is 25% of the thermistor, the thermistor will have 80% 
		of rail voltage.
 If the thermistor drops to half resistance, it will have 66% across it.  
		The change will be 14%.
 If the resistor is 10% of the thermistor, the thermistor will have 91% 
		of rail voltage.
 If the thermistor drops to half resistance, it will have 83% across it.  
		The change will be 8%.
 
 The same situation will apply if the resistor is 10 times the resistance 
		of the thermistor.
 If the resistor is 10 times that of the thermistor, the thermistor will 
		have 9% of rail voltage.
 If the thermistor drops to half resistance, it will have 4.7% across it.  
		The change will be 4.3%.
 
 You don't have to understand the mathematics behind the analysis.
 You only have to remember this:  Make the voltage dropper resistor 
		EQUAL to the thermistor to get the best results.
 This will put mid-rail voltage on the join and you need to design the 
		surrounding circuitry to detect this value. The best detector is the 
		analogue channel of a microcontroller. You can detect as little as 1mV 
		change.
 You can also use a transistor Schmitt Trigger or Schmitt Trigger IC but 
		remember the change occurs at about 33% or 66% of rail voltage for a 
		Schmitt Trigger IC.
 
 
 The value of the voltage-divider resistor should be the same resistance 
		as the NTC thermistor at the temperate being detected.
 Refer to a chart (table) to determine the value of the NTC thermistor at 
		the desired temperature and select the same value for the resistor.
 This will create the largest change in voltage at the join of the two 
		components at the temperature being detected.
 This voltage will be very close to mid-rail voltage and you will need a 
		microcontroller to detect this voltage via the micro's ADC channel.
 
 Why hasn't this been mentioned 
		before?
 In most circuits where a component changes resistance, the change is 
		very large and the value of the voltage-divider resistor is not 
		critical.
 A typical case is a photo resistor (also called LDR -Light Dependent 
		resistor).
 The resistor of an LDR can change from 300k to less than 1k and the 
		voltage (at the join of the LDR and voltage-divider resistor) can be 
		easily detected.
 But when the change is very small, you need a micro to detect the 
		mid-rail voltage.
 
 From: 
		http://www.doctronics.co.uk/voltage.htm
 
	
		|  KEY 
		POINT: | The biggest change in Vout from 
		a voltage divider is obtained when Rtop and Rbottom are 
		EQUAL in value. |  
  
	
		
		CRYSTAL RADIOHere's a simple circuit for a Crystal Radio. But it 
		will not work !!
 
	
		No tuning capacitor is 
		shown on the circuit 
 
	
		 
	
		The crystal earpiece is made with a piece of crystal with two wires 
		attached. When a voltage is applied to the wires, the crystal changes 
		shape. The crystal is connected to a thin sheet of aluminium and when it moves, 
		you can hear sounds such as voice and music.
 The crystal has a very high resistance - about 10 meg ohms and you can 
		consider it to be an OPEN CIRCUIT.
 But when a signal is delivered to the earpiece, the crystal appears to 
		be equal to a capacitor of about 20n.
 This means the earpiece is just a like a 22n capacitor.
 The signal picked up by the antenna and passed to the earpiece via the 
		diode will charge the "capacitor" and when the signal reduces, the 
		charge will remain on the "capacitor."
 This means the aluminium diaphragm will move in one direction and there 
		is no component in the circuit to discharge the "capacitor" and move the 
		diaphragm in the opposite direction.
 A 10k resistor is needed across the earpiece to discharge it ready for 
		the next cycle.
 
 
  
	
		BLOWN FUSE 
	
		 
	
		Here's a BLOWN FUSE circuit from 
	
		Professor Mohankumar.
 When the fuse blows, the red and green LED will be delivering current 
		directly to the LOAD.
		
	
		 A LED can only withstand a small 
		voltage in the reverse direction and any voltage above this will damages 
		it.
 When the fuse blows, either one or both LEDs will be damaged, depending 
		on the input voltage.
 This is a USELESS circuit. It has not been tried or tested.
 
  
	
		FIRE ALARM 
	
		 
	
		
		Another badly designed circuit 
	
		from 
	
		Professor Mohankumar.
 Resistor R1 is not needed. It does nothing.
 The 5v1 zener can be removed as it simply changes the position of the 
		wiper on the pot.
 You cannot get a 4k7 pot. It is 5k.
 C1 does nothing.
 
 You just need the 5k pot connected to the base of the transistor.
 Adjust the pot until the buzzer produces a noise.
 Adjust the pot to stop the noise and use a cigarette lighter to heat up 
		the NTC thermistor and see how much heat is required to produce a sound.
 The sensitivity of the circuit will change when the battery voltage 
		reduces and it is only an experimental circuit and MUST not be used in a 
		real fire hazard situation.  It has no beep to let you know the 
		battery is low.
 
 
  
	
		Here's two very clever names or words: 
	
		A trucking company by the name of:  NEWAY A number plate:  XINNY
 
 Did you read them correctly:   ANYWAY    and 
		TINNY  - referring to the original TIN LIZZY.   The Ford 
		Model T (colloquially known as the Tin Lizzie, Tin Lizzy, T-Model Ford, 
		Model T, or T).
 
	
		 
	
		BELL 
		CIRCUIT 
	
		 
	
		This is the worst circuit I have seen.
 Who is going to push the "BELL PUSH" for 2 - 3 seconds ???
 
 The 12v circuit energises the relay to deliver 5v to the music chip.
 You don't need the 7812 or the relay.
 Who connects a "Bell Push" to the 240v   - only someone who 
		wants to KILL their visitor !!!!!
 
 This is the worst, most dangerous, unworkable, circuit I have seen.   
		DO NOT BUILD IT
 
	
		 
	
		Someone on an electronics forum asked me how to measure the thickness of 
		wire. All the replies said to use a micrometer - they really mean a 
		dial-micrometer.
 But the cheapest and simplest way is to wind say 30 turns on a rod and 
		compare the length with 30 turns of the new wire.
 No equipment needed -  just INTELLIGENCE !!!!
 
	
		 
 
	
		I'm putting a diode on a board, do I use conventional theory or modern 
		theory?   -  Chris Conrad.
		
		All component symbols - including diodes, 
		transistors, FETs and anything with an arrow, shows the way current will 
		flow in the device. This is LUCKY because it helps us remember and helps 
		us describe how a circuit works. When drawing an electrical circuit or an electronic circuit, all arrows 
		refer to CONVENTIONAL CURRENT - this is the same as saying: 
		ELECTRICIAN'S CURRENT or ELECTRICAL CURRENT.  Where "electricity" 
		flows out the positive terminal and into the negative terminal.  We 
		also say CURRENT flows from positive to negative. We never say VOLTAGE 
		flows from positive to negative. Voltage is just the height of the water 
		and when the water flows in a pipe from a high point to a low point, the 
		flow is CURRENT. Voltage is just the pressure of the water that you can 
		feel at the outlet by putting your finger on the pipe and trying to stop 
		the flow of water.
 If a lot of water comes out, the CURRENT  is large.
 Unfortunately, scientists (physicists) have found that electrons flow in 
		the opposite direction but EVERYONE who talks about the operation of an 
		electrical or electronic circuit, uses CONVENTIONAL CURRENT as the 
		direction of current-flow.
 If you are talking about the atomic structure of a transistor and the 
		P-layers and N-layers and "channels"  and "pinching effect" etc you 
		talk about ELECTRON FLOW  or the movement of electrons; and the 
		flow of electrons is from Negative to Positive.
 
  
	
		SOLAR TRACKER  
	
		 . 
	
		 The correction is shown in red.  The LEDs are used to receive 
		illumination
 
	
		The designer of this circuit has used an op-amp that only "pulls-down" 
		(called an open-collector output). This means he has had to use a 
		pull-up  2k7 resistor. Why use an op-amp that does not pull both HIGH and LOW and save 2 
		resistors.
 
 Connecting the collector of the first transistor in the super-alpha 
		arrangement to the collector of the output transistor means the output 
		transistor cannot turn ON fully.
 If we take Q3, it cannot behave as an amplifier if the collector is not 
		at least 0.3v above the emitter.
 If the collector voltage is less than 0.3v, the transistor simply acts 
		to pass the base current to the emitter via the natural voltage drop of 
		this junction.
 With the collector 0.3v above the emitter, the minimum voltage on the 
		collector will be 0.3v plus 0.7v across the base-emitter of the TIP3055.  
		This means the collector of the TIP cannot go lower than 1v.
 
 The solution is the connect the collector of the first transistor to the 
		12v supply via a resistor and this transistor can now provide the gain 
		needed to drive the output transistor.
 
 The two super-alpha arrangements can be replaced by single Darlington 
		transistors such as BD679 (NPN) and BD680 (PNP). These arrangements will 
		deliver up to about 6-8 amps.
 
	
		Not a very good circuit because using two 12v batteries means having to 
		charge them separately if they are to remain connected to the 
		circuit.  
  
	
		
		BURGLAR ALARM 
 
	
		 
	
		Here's another circuit from Professor Mohankumar. 
 Firstly, what is the purpose of R5 ????  It can be removed.
 R6 feeds a 5v1 zener.
 When the output of the PIR sensor goes HIGH, R7 is placed across the 
		zener and this effectively puts two 470R across the 9v supply so about 
		4.5v will appear at their join.
 At the same time a 1k resistor is effectively placed from the join to 0v 
		rail and this will reduce the voltage even further. The final voltage is 
		unknown but the maximum for the UM3561 is 3.6v.
 Even though the circuit will work, the zener has already dropped out of 
		regulation and the voltage on the PIR detector has reduced and this may 
		upset its operation.  It has an internal 5v regulator and the 
		voltage is already below this value.  Not a very good way to design 
		a circuit. A zener should never be allowed to dropout of regulation and 
		the PIR sensor has an internal 5v regulator, so the 5v1 zener is not 
		needed.
 
 
  
	
		
		NIGHT LAMPAnother badly designed circuit 
	
		from 
	
		Professor Mohankumar.
 
	
		 This is the original circuit.
 
	
		 The top 1N4007 is not needed because it does not do anything.
 
	
		 The 1N4007 across the LED is not needed because the top 1N4007
 does not allow current to flow in the opposite direction and
 the LED is protected from reverse voltage/current.
 
	
		The 33k will allow 7mA to flow, but since this is a half-wave circuit, 
		the average current will be 3.5mA.  This will not produce a very 
		bright illumination. None of Mohan kumar circuits have been checked or tested.
 
 
  
	
		
		LED REGULATORAnother bad circuit 
	
		from 
	
		Professor Mohankumar.
 
	
		 
	
		The output voltage is 1.8v - 0.6v = 1.2v     NOT 
		1.6v 
	
		 
	
		
		FUSE FAIL
		
 
	
		 
	
		Here is the description from
	
		Professor Mohankumar:
 This circuit can be hooked between the power supply and the load. 
		When the fuse is intact, LED remains ON since it has continuity for 
		current path. When fuse blows, LED turns off.
 
	
		The LED turns ON when the fuse blows.   His description is 
		incorrect !!!! 
	
		
		POLARITY INDICATOR 
	
		 
	
		Here is the description from
	
		Professor Mohankumar: 
	
		When the positive and negative polarity of the power supply and 
		the load are correct, LED remains off. When the polarity of the load 
		reverses, LED turns on. 
	
		How can the polarity of a load reverse??????The definition of a load is a device that does not produce or supply any 
		voltage or current.
 How can the Indian student get anywhere with electronics when you have a 
		Professor spieling such nonsense.
 
 CURRENT FLOW
 
	
		 
	
		Here is the description from
	
		Professor Mohankumar:
 This is ideal for battery chargers. If current is flowing to the 
		battery LED lights. It indicates whether the battery connector is 
		properly connected or not with the charger.
 
 The voltage-drop across each diode is 0.7v.  The total is 1.4v. A 
		LED requires a minimum of 1.7v. The LED will NEVER illuminate.
 Another untried circuit.
 
 From all these simple faults you can see Professor Mohankumar  - an 
		Indian lecturer, has absolutely no idea about electronics and should not 
		be in charge of a class or put his RUBBISH on the web.
 If I was a student and found out I was being taught rubbish from a 
		lecturer, I would be very ANNOYED.
 
 
	
		 
	
		A hobbyist has sent a technical question to Colin Mitchell.AC to DCHe is using a CRO to determine the current in a LED flasher circuit.
 He is using the x10 on the probe.
 Here is his statement:
 I see triangle wave, peak 5mV on the 10-times attenuated on the 
		probe - in reality it's 50mV.
 
 The x10 position on the probe is only used when the voltage being 
		"looked at" is VERY HIGH - such as 500v or more.
 The x10 setting or "position" on the probe is a slide switch that adds a 
		9M resistor and 1M resistor (in series) to the probe-tip so the 500v is 
		across 10M and this becomes a VOLTAGE DIVIDER where the CRO is across 
		the 1M resistor and thus it sees 10% of the actual voltage. Thus it sees 
		50v in this case.
 The x10 position is not designed for 50mV viewing as the 50mV can be 
		viewed on the x1 position of the probe.
 
 The x10 setting on the probe has another advantage.
 The input to a CRO is about 1M. If you are measuring a voltage from a 
		flyback circuit or a capacitor multiplier, it will not be able to 
		deliver a high current and the circuit is said to be HIGH IMPEDANCE.
 Suppose the impedance of the circuit is 1M.
 When the circuit is producing say a voltage of 100v, the loading of the 
		CRO of 1M will reduce the voltage to 50v. But when the probe is switched 
		to x10, the loading will be only 10% and the reading will be 90v.
 
 
  
 
 
	
		 
	
		Here's another useless circuit from
	
		Professor Mohankumar.The current delivered by the 22k will be 240 / 22,000 = 11mA for each 
		half cycle.
 This means the current available from the zener/electro section will be 
		11 / 2 = 6.5mA
 The wattage dissipated by the 22k will be 240 x .0065 = 1.56 watts.  
		The 1 watt resistor will burn out !!!!
 This means 6.5mA will flow through the 1k resistor and produce 6.5v 
		across it. The LED will produce 2v across it and the final output 
		voltage will be 8.5v.
 At the moment all the current is flowing through the LED and the zener 
		is not in breakdown.
 If you try to take any current from the circuit the output voltage will 
		drop.
 Remember, you can only take a maximum of 6.5mA and when you take 6.5mA, 
		the output voltage will drop to ZERO.
 Suppose you take about 1mA. This means the load will be 5k and the 
		voltage will drop from 8.5v to 6.7v.
 What a useless circuit !!!!
 
 
   
 
   
 
   
 
   
 
   
 
   
 
   
  Page 111 
  Page 2 
  Page 3 
  Page 4 
  Page 5 
  Page 6 
  Page 7 
  Page 8 
  Page 9Page 10 
  Page 11 
  Page 12 
  Page 13 
  Page 14 
  Page 15 
  Page 16 
  Page 17
 Page 18 
  Page 19  
  Page 20 
  Page 21 
  Page 22 
  Page 23  
  Page 24    
  Page 26
 Page 27 
	Page 28 
  Page 29 
  Page 30
  
  |